学科分类
/ 25
500 个结果
  • 简介:0前言锌空气电池具有容量大、比能量高、放电性能稳定、原材料便宜易得、生产和使用过程均无环境污染等优点,被称为'面向21世纪的绿色能源'[1,2].因为碳黑的密度小,比表面积大,是一种良好的导电剂,目前,作为锌空气电池导电剂的主要是碳黑等碳材料.锌空气电池空气扩散电极现在主要还存在憎水性能差、放电电流密度小、使用寿命短等问题.

  • 标签: 锌空气电池 电极性能 比能量 放电性能 碳材料 容量
  • 简介:通过析氢实验、极化曲线测试、放电性能测试,研究了在6mol/LNaOH电解液中添加不同浓度Na2SnO3和由Na2SnO3、十六烷基三甲基溴化铵(CTAB)组成的复合缓蚀剂对铝合金电极析氢速率和电化学性能的影响。实验结果表明:缓蚀剂的加入能不同程度抑制铝合金电极的析氢腐蚀,提高阳极利用率,改善铝阳极的电化学性能,一定浓度配比的复合缓蚀剂的效果要比单一缓蚀剂效果明显。在添加有0.025mol/LNa2SnO3和10mg/L十六烷基三甲基溴化铵(CTAB)的复合缓蚀剂电解液中,铝电极的析氢腐蚀受到明显抑制,缓蚀效率达93.4%,同时表现出较好的电化学性能

  • 标签: 复合缓蚀剂 碱性电解液 十六烷基三甲基溴化铵 电化学性能
  • 简介:以石墨毡为电极材料,以甲基磺酸和甲基磺酸铅溶液为电解液,组成新型的全沉积型铅酸液流电池体系.研究了石墨毡正负电极上的循环伏安特征和电极表面改性处理、电解液浓度、添加剂等对电极循环伏安特性的影响规律.结果表明:实验测得石墨毡正极上氧化峰电位为1.39V(vs.SCE),与理论值非常接近,负极还原峰电位与理论值间的过电位仅为0.17V;在强酸与热处理表面改性方法中,热处理方法对提高石墨毡负极电化学活性效果最好;当电解液中的铅离子和氢离子浓度均为0.01mol/L时,具有最佳循环伏安特性.

  • 标签: 石墨毡 铅酸液流电池 循环伏安特性
  • 简介:摘要:电池属于化学电源,能够将化学能转变为电能,其在实际使用中能够对能量进行高效转化,并且能量的密度较高,可以随意组合与移动,已经成为人们日常生活中的必要组成部分。基于此,以锌—银电池为例,先分析其性能,再研究不同化成制度对银电极产生的影响,为今后锌—银电池性能提升提供技术支撑。

  • 标签: 锌—银电池 化成制度 银电极性能
  • 简介:摘要:采用江苏国技仪器有限公司生产的 AM-4000型氟离子水质在线分析仪对地表水中氟化物含量测定。研究水样温度、 pH、响应时间等参数对检测结果的影响。在一定条件下,验证出其方法线性范围为 0.10~10mg/L,相关系数为 0.9999。对地表水样加标回收率为 98%~109%,相对标准偏差( n=5)小于 5%。氟离子选择电极使用简便,重现性好,加标回收率在合理范围,且无额外废液产生,可应用于地表水氟离子浓度的测定。

  • 标签: 氟离子选择电极 在线 地表水
  • 简介:采用线性电势扫描伏安法、循环伏安法、计时电势法、交流阻抗法研究了不同铕离子加入量的硫酸溶液中铅锑合金电极的电化学特性。实验结果表明:在硫酸溶液中添加铕离子后,改善了Pb与PbSO4间转化反应的可逆性;铕离子的存在提高了铅锑合金电极的析氢量;抑制了铅锑合金电极上氧化膜中高电阻的PbOn的生成,提高了氧化膜的导电性;阻碍了钝化现象的发生。铅锑合金在添加铕离子的硫酸溶液中的电化学特性与稀土-铅锑合金在硫酸溶液中的规律相同。

  • 标签: 铅蓄电池 电化学特性 铅锑合金电极
  • 简介:研究了碱性介质中电解液添加剂二乙醇胺[(C2H4OH)2NH]和三乙醇胺[(C2H4OH)3N]的混合物对锌电极的枝晶和变形的影响。电位阶跃法得出的电流-时间曲线和氧化锌溶解度测试的研究结果表明,添加剂可以降低恒电位阴极极化中反应电流的回升值,降低氧化锌在电解液中的溶解度,从而减缓锌电极的变形和枝晶。当添加0.3%wt二乙醇胺+0.1%wt三乙醇胺时,锌电极综合性能优良,有望投入实际应用。

  • 标签: 锌电极 电解液添加剂 二乙醇胺 三乙醇胺 枝晶 变形
  • 简介:传统的化学处理方法在印染废水的治理过程中往往存在成本高、药剂二次污染等缺点,本文进行复极性三维电极处理印染废水的技术与能耗分析后得到结论:一些有机化合物的环保有效反应在电极上进行,能够促进电化学法在水处理技术上的发展.

  • 标签: 印染废水 能耗分析 电极处理 复极性 三维 化学处理方法
  • 简介:摘要随着社会经济和社会环境的不断发展,促使科学技术和观念也得到了有效的提升,其中就包括对金属纳米结构材料的研究与分析。同时,由于其的尺寸、形状、构成等的改变会出现不同机构,并且具备不同的物理性质,在实际发展的过程中也受到了广泛的应用。金属纳米结构电极素材本身就具备大面积、高效的催化活性以及优质的导电性,促使其在电催化和电化学传感的工作中占据重要的影响力。

  • 标签: 金属纳米结构 电极材料 制备 性能研究
  • 简介:CS—PAn(4G学氧化聚合法合成聚苯胺)膜电极的CV曲线类似于ES—PAn(电化学聚合法合成的聚苯胺)膜电极,而且他们都具有优良的可逆性和循环稳定性。交流阻抗图谱表明两种方法制备的PAn具有相同的电化学反应机理。CS—PAn-Li和ES—PAn-Li扣式电池的最大放电比容量分别为75mAh·g^-1和86mAh·g^-1,容量衰减率分别为13.2%和6.8%,ES—PAn—Li扣式电池的大电流充放电性能优于CS—PAn-Li扣式电池。

  • 标签: 聚苯胺 掺杂 膜电极 电化学性能 锂电池
  • 简介:通过对稳定情况下半导体制冷器P型元件的工作模型分析,给出了其工作性能的分析解和数值解.结果显示对于单级制冷器,其制冷元件工作在较大温差下时,考虑温度对材料性能的影响是必要的.

  • 标签: 半导体制冷器 制冷系数 制冷率
  • 简介:采用自制的丝束电极对5种油品的防锈性能进行了评价,并与传统的盐雾试验进行了对照。结果表明:两种实验结果具有良好的一致性,而丝束电极方法更具快速、准确和定量的特点,是一种有发展前途的电化学测量方法。

  • 标签: 丝束电极 油膜 防锈性能 电化学测量方法 盐雾试验
  • 简介:对比相同的空气电极在同样的锌空电池系统中采用不同摆放方式后产生的不同的放电特性,分析空气电极的摆放方式对电池放电性能的影响,进而分析锌空电池反应界面的特征。实验结果表明:随着空气电极暴露于空气中面积的增加,锌空电池的功率逐渐增加,锌空电池放电功率与空气电极暴露面积成非正比线性关系。进一步的实验表明:当空气电极全部被水淹时,反应效率为零;锌空电池的空气电极反应区域是暴露于空气中的部分,水淹部分不参加反应。水线位置的反应效率最大,占总功率的80%以上,并且电池的反应功率随着电极暴露于空气中面积的增大而增大,这是由于在水线位置氧气分子可以迅速地得到电解质中的电子。

  • 标签: 锌空气电池 空气电极 摆放方式 反应效率
  • 简介:摘要通过库仑法水分测试仪标定不同水分含量的磷酸铁锂正极片,将其制备成软包型锂离子电池。对其电化学循环性能?倍率性能?交流阻抗进行了测试。结果表明不同水分含量极片制备的电池循环性能及倍率性能电极水分含量有密切关系。

  • 标签: 电极水分 磷酸亚铁锂 软包电池 循环性能
  • 简介:采用原位水热法与高温煅烧相结合,通过镍盐和碱的合成体系直接制备NiO工作电极.利用XRD和SEM对电极结构进行了表征,测试了电化学性能,并对比了3种碱,包括尿素、氨水和氢氧化钠对产物形貌和电化学性能的影响.结果表明以尿素为碱制得的NiO电极以2mol/L的KOH为电解液在0.25A/g的放电电流密度下,获得最大比容量为200F/g.

  • 标签: 水热法 NIO 电极材料 超级电容器
  • 简介:摘要:对不锈钢电极防腐性能进行研究,总结聚苯胺修饰的技术优势。目的是通过不锈钢电极防腐性能的分析及常见腐蚀类型的确定,细化聚苯胺修饰方案,稳步提升不锈钢电极防腐效果,为行业的稳步运行及持续发展提供参考。

  • 标签: 聚苯胺 不锈钢电极 防腐性能
  • 简介:摘要: 本文探讨了锂离子电池中电极材料的设计与性能优化。通过分析不同电极材料的结构、成分及其对电池性能的影响,提出了一系列改进措施。采用先进的材料合成技术,优化了电极材料的微观结构,提高了电池的能量密度和循环稳定性。此外,对电解质、添加剂等辅助材料进行了研究,以进一步提升电池的性能。本研究对于提高锂离子电池的能量密度、循环寿命及安全性具有重要意义。

  • 标签: 锂离子电池 电极材料 性能优化 微观结构 能量密度
  • 简介:以新型SiO2大孔材料为载体,采用原位聚合及真空热解的方法制备出大孔径C/SiO2导电材料,以其为基体经SbCl3原位水解和高温重结晶得到三维大孔结构的C/SiO2/Sb2O3(crystal)复合材料。通过热重分析、X射线衍射、扫描电镜、充放电和交流阻抗等多种方法对C/SiO2/Sb2O3的结构和相应锂离子电池的性能进行研究,表明用该大孔炭电极制作锂离子电池的方法可行。电极所固有的三维大孔结构使导电物质与电活性物质保持良好结合,不但能充分发挥Sb2O3地高容量特性,更有利于降低电池的内阻、改善电池的循环性能

  • 标签: 锂离子电池 负极材料 SB2O3 大孔炭电极
  • 简介:具全离子结构的离子液体因其优良的导电性和独特的环境相容性,使其在电沉积、电容器、燃料电池、太阳能电池、修饰电极等方面的重要应用。用循环伏安、交流阻抗、计时电流、计时电位、稳态极化曲线法对咪唑型离子液体的电化学性能进行了研究,其结论对生物离子液体传感器的研发和制备有一定的价值。

  • 标签: 离子液体 生物传感器 电化学