学科分类
/ 25
500 个结果
  • 简介:利用分子动力学方法对铜-氩纳米流体和基础流体在不同剪切速度下的纳米尺度的Couette流进行模拟计算。结果表明:在纳米尺度通道内,纳米流体流动过程中颗粒存在旋转运动和平移运动,从而加强湍流效果,强化传热并影响整个流动区域内的流动速度分布,造成纳米流体速度呈非线性分布。壁面和纳米颗粒表面都会形成一层排布更为规则的液体原子吸附层,吸附层内液体分子在流体流动过程中一直伴随着壁面和纳米颗粒进行运动,且吸附层具有"类固"特性,可以增强纳米流体的传热能力。

  • 标签: 纳米通道 纳米流体 流动特性 分子动力学
  • 简介:  摘要:综述了近几年微通道反应器在微 - 纳米材料合成领域的研究进展情况 , 介绍了合成过程中一些因素 , 如停留时间、反应温度、反应物浓度和进料方式等对合成微粒的影响。随着社会经济发展的加速,微通道反应装置如雨后春笋般矗立在祖国的大地上。而微通道反应装置作为纳米材料最基本的材料之一,其需求量越来越大,质量和功能的要求越来越高,所以传统的微通道反应装置已经远不能满足如今的需要,使用新技术改良传统微通道反应装置的性能成为建筑业首要的研究方向。本文作者结合自己的工作经验并加以反思,对纳米材料在微通道反应装置材料中的应用进行了深入的探讨,具有重要的现实意义。   关键词:纳米技术;纳米材料;微通道反应装置   一、纳米技术概述   纳米技术是上个世纪八十年代兴起的新型技术,是指在纳米量级范围内,通过操纵原子、分子、原子团或分子团使其重新排列组合成新物质的技术,其产物纳米材料也是纳米技术发展的基础。纳米材料通常指的是颗粒尺寸在纳米量级也就是( 1nm ~ 100nm )之间超细材料,具有独特的光学、电学、热力学和磁能学的性能。所以纳米技术广泛的运用于建筑、军事、医药、半导体、通讯等领域,并起到了很重要的作用,是重要的组成部分之一。   二、纳米通道反应装置概述   微通道反应装置是如今用途最广、用量最大的建筑材料之一,在 1830 年问世以后,持续使用了 170 多年。而且微通道反应装置拥有耐火性强、使用方便、制作简易、抗压性好等优点,所以一直被人们沿用下来。不过微通道反应装置的成分组成表明了其韧性和抗拉能力的不足,要想解决这样的问题必须去改变微通道反应装置的组成成分。    1. 纳米通道反应装置力学性能的研究   研究表明 SiO2 ( NS )的火山灰活性远高于硅粉的火山灰活性,掺入 NS 的浆体存在流动性变小和凝结时间缩短的现象,同时 NS 的掺入能显著提高微通道反应装置的早期强度。 NS 掺入到硅酸盐水泥中,其火山灰反应吸收了大量的 Ca ( OH ) 2 ( NC )进而促进了水泥水化,提高了水化开始时的放热速率,并改善了水泥浆体的微观结构,使水泥更加均匀密实 [1] 。纳米 CaCO3 掺入到水泥材料中后起到了物理填充效应、水化效应和晶核效应,降低了水泥石内表面积,加快熟料早期水化速度,增加水泥石密实度,降低孔隙率,进而提高水泥石的抗压强度。   黄政宇等将未掺纳米材料微通道反应装置、掺纳米 SiO2 微通道反应装置和掺纳米 CaCO3 微通道反应装置三组试件做了对比试验,实验表明掺入纳米 SiO2 的微通道反应装置的抗压强度提高 4% ,掺入纳米 CaCO3 的微通道反应装置养护 28d 抗压强度比未掺假 NC 的微通道反应装置提高了 16.7% 。同时他们得出掺加 NS 和 NC 的最佳量分别为 0.5% 和 3% 。试验还得出掺入纳米材料的微通道反应装置流动性会降低。   郭保林、王宝民 [3] 对纳米通道反应装置的性能进行了系统的试验研究,他们认为掺入 NS 能提高微通道反应装置早期强度,尤以 7 天时最显著,此时掺入 5% 的 NS 比掺入 3% 的效果明显,后期的强度也与 NS 掺入量有关,掺入 5% 的 NS 在 60 天时的强度小于基准微通道反应装置强度,并得到掺加 3% 的 NS 对微通道反应装置后期强度增加明显。   唐小萍、魏秀瑛等也做了类似的研究,试验所用纳米材料是 SiO2 和 Al2O3 ,以三种不同的纳米掺加量作为对比,结果表明掺入该纳米混合材料后可提高微通道反应装置 3d 、 7d 、 28d 抗压强度 20% 、 15% 、 10% 。    2. 纳米通道反应装置抗渗性能的研究   纳米 SiO2 可以提高微通道反应装置抗裂、抗渗、抗冻等性能。研究表明:纳米 SiO2 可以改善微通道反应装置的微观结构和综合性能,能够封堵微通道反应装置内部孔隙,增强其抗裂性,提高微通道反应装置抗渗、抗冻、抗化学侵蚀、抗冲磨等性能,从而提高水工微通道反应装置的耐久性。   黄功学、谢晓鹏将微通道反应装置试件养护至 28d ,对试件一次加压 24h ,用压力机劈开试件,测量渗水高度。微通道反应装置抗渗性能随着纳米 SiO2 掺量的增加而提高;纳米 SiO2 掺量为 1% 、 3% 、 5% 时微通道反应装置的渗水高度比普通微通道反应装置分别降低了 19% 、 44% 、 61% 。他们认为纳米 SiO2 使微通道反应装置中渗水通道堵塞或减少,微通道反应装置的密实程度得到提高,降低了溶出性侵蚀的危害。

  • 标签:
  • 简介:摘要纳米流体作为一种新型高效的换热介质,其在电子芯片微通道中的应用被广泛研究。本文将高效的Wavy通道冷板结构和新型高效纳米流体工质Al2O3相结合,以充分发挥液冷冷板的散热潜能。通过Fluent建立了Wavy冷板通道三维物理模型,介绍了研究纳米流体常用的多相流模型与导热系数的计算关联公式,结果表明对流换热系数随着流体体积流量的而增大;在相同的体积流量条件下,随着纳米颗粒体积分数的提高,换热系数也有显著的提高,同时阻力和压降也会增加。综合Wavy通道结构和纳米流体工质显著地强化对流换热,从而为解决高热流电子设备的散热问题提供有效的途径。

  • 标签: 纳米流体 Wavy通道 换热特性 流动阻力
  • 简介:采用分子动力学(MD)方法,模拟复合纳米通道中NaCl溶液的电渗现象,讨论纳米通道中出现涡流的可能性,模拟结果表明,复合通道双电层内,离子分布是十分复杂的,同种离子在通道中不同区域分布也不相同,靠近壁面的附近出现了涡流,通道中部溶剂速度流型呈S型,纳米通道中也能产生涡流。

  • 标签: 复合纳米通道 电渗流 涡流
  • 简介:据LiveScience2016年11月23日报道,欧洲研究人员开发出了一种新类型的生物分子,被称为纳米抗体,或微型抗体。该纳米抗体可阻断炎症和降低小鼠疼痛。该纳米抗体被描述为针对炎症疾病的面向未来的技术。在对小鼠的实验中,纳米抗体能更有效地控制炎症,比任何常规抗体或消炎药效果都好。该纳米抗体可能会发展成为针对慢性疼痛、炎性肠病、多发性硬化和其他炎性病症的高效治疗方法。

  • 标签: 微型抗体 炎症疾病 慢性疼痛 纳米 P2X7 减轻
  • 简介:摘要:随着碳器时代的到来,纳米科技已经走进了我们的日常生活。纳米技术在总体上对社会经济的影响要远远比硅积体电路大得多,因此它不但用于电子学领域,而且还能够运用于其他领域。更有效的电子产品其性能改善以及先进制造业技术的发展,将在二十世纪引领着许多产业革命。

  • 标签: 纳米材料 纳米科技 现状 实际应用
  • 简介:男主人公给女主人公打来电话。他问,“你好吗?”她说,“差不多,你呢?”“我最近,噢,有两件事,特别想跟你说说,你在哪?办公室吗?”“是。”“那我打你办公室。”

  • 标签: 通道 女主人公 男主人公 办公室
  • 简介:美国宾夕法尼亚大学和莫内尔化学中心的科学家研制出嗅觉和味觉非常敏锐的纳米鼻和纳米舌。它们实际上是一种传感器,是由壁上涂上一层专门培养出来的脱氧核糖核酸(DNA)的、尺寸为纳米量级的小碳管构成的。纳米鼻和纳米舌有如下四个优点。第一,它的灵敏度很高。第二,由于负责感应的脱氧核糖核酸涂层是“专门订做”,因此它们能应用于检测各种气味和味道。第三,这些脱氧核糖核酸涂层可以连续使用50多次以上。第四,它们的尺寸很小,可以发现分子量级的目标,而且可以在任何地点和场所投入使用。

  • 标签: 纳米量级 美国宾夕法尼亚大学 脱氧核糖核酸 制成 投入使用
  • 简介:纳米科技和生物技术是二十一世纪的前沿科学技术,文章介绍了两者交叉所形成的新内容:纳米医学、纳米生物材料和纳米生物技术等方面的发展。

  • 标签: 纳米生物技术 纳米生物材料 纳米医学
  • 简介:看过《西游记》的人,都会记得孙悟空钻进铁扇公主肚子里的故事。如今,随着纳米技术的发展和应用,纳米武器也正由神话成为现实。

  • 标签:
  • 简介:在过生日许愿的时候,我许下了一个奇怪的愿望:希望我能无限变大和无限变小!结果,这个愿望实现了一半儿——我只得到了变小和恢复的咒语,却不知道变大的咒语。不过,一半儿总比没有强,于是我应聘到“小小米手机公司”,去做了他们的技术研发人员。

  • 标签: 科技 纳米 研发人员 愿望 咒语
  • 作者:
  • 学科: 文化科学 >
  • 创建时间:2011-12-22
  • 出处:《英语周报》 2011年第28期
  • 机构:对于有些人来说,即使是工作忙、压力大,也会在百忙中抽出哪怕一天的时间出去好好放松一下。由此,“纳米假日”便应运而生了。
  • 简介:

  • 标签:
  • 简介:如果说20世纪是微米(micro)世界,那么在21世纪继承了micro、继续辉煌的就一定是纳米(Nano)。

  • 标签: 世界 纳米 20世纪 21世纪
  • 简介:相比注射洽疗,大多患者更倾向于选择口服药剂治疗疾病。但是,有许多药品,尤其是含有大分子蛋白质的药物都不能以片剂的形式使用,因为这些蛋白质在消化道中就会被分解无法发挥疗效。为此,麻省理工大学(MIT)的研究人员研发了一种新型胶囊。这种胶囊表面覆有微型针管,可以在患者口服后将药物直接注射于胃中。进行动物试验时,该研究团队发现,用这种胶囊输送胰岛素比皮下注射更有效,而且该胶囊对消化系统没有任何副作用。

  • 标签: 纳米医学 消化系统 研究人员 动物试验 研究团队 蛋白质
  • 简介:

  • 标签: