旋转矢量法在简谐振动中的应用探讨

(整期优先)网络出版时间:2022-09-22
/ 2

 旋转矢量法在简谐振动中的应用探讨

刘汕1,2,庞礼军1

贵州师范大学,贵州 贵阳 550025;2.四川省达州市达川区百节镇中心学校,四川 达州 635000

摘 要结合旋转矢量法理论依据探究旋转矢量法在简谐振动中的应用,探究结果发现:旋转矢量法的理论依据是两个振幅相等,频率相同的简谐振动,相位差等于π/2沿垂直方向的合成就是圆周运动;而旋转矢量法计算简谐振动的矢端速度与加速度、相位初相位运动时间间隔及合振动

关键词:旋转矢量;简谐振动;应用

0.旋转矢量法

旋转矢量法[1],也叫匀速圆周运动法,参考圆法,用其方法来解决简谐振动中的问题,相对来说比较简单。如图1,做一个圆周,以O为原点,向右为正方向建立坐标轴,根据题目条件确定半径位置,要观察的是半径的端点在x轴上的投影的位置,如果速度为正,半径端点一定处于x轴下方,反之在x轴上方,比如,t=0时,质点正经过平衡位置向正方向运动,那么这个半径端点就是在原点正下方,即端点的投影刚好在原点[2]以O为原点的旋转向量A的端点与在x轴上的投影点的运为简谐振动。

D:\My Documents\Tencent Files\1378975124\Image\C2C\26DC72C2B6DE87E2B6F6A8290FB17FED.jpgD:\My Documents\Tencent Files\1378975124\Image\C2C\1B466E99A5E7CA309F79B7B72E3FFC8C.jpg

图1 旋转矢量                图2 相位差为π/2互相垂直简谐振动的合成

1.简谐振动矢量法的理论依据

互相垂直相同频率简谐振动的合成[3],现将分振动的运动学方程表示为,质点既沿Ox轴又沿Oy轴运动,实际上是在Oxy平面上运动。从上面方程消去t,得合振动的轨迹方程:

=。当相位差为时,,表明

合振动的轨迹为以xy为轴的椭圆,如图2所示

这里又可分为两种情况,时,x方向的振动比y方向的振动超前,即当某一

瞬时,x=0y=A2,即质点在图2(a)中的P点,经过很短时

间后略大于零,y将略小于A2,为正,而略大于,x将为

负,故质点运动到第二象限,即质点沿椭圆逆时针运动。反之,时,y方向的振动比x方向的振动超前,质点沿椭圆顺时针方向运动,如图2(b)。以上两分运动中,若=且相位差为,则其合运动轨迹方程褪化为圆。

两个振幅相等,频率相同的简谐振动,相位差等于沿互相垂直方向合成的为圆周运动;反推理可得,圆周运动亦能分解为两互相垂直的同振幅同频率的简谐振动。圆周运动同简谐振动这种密切联系,正是简谐振动矢量表示法的理论依据。

简谐振动问题中最常计算的就是求简谐振动的运动学方程式,以及简谐振动的角速度与加速度,初末相位之差,振动时间间隔和求合振动等,在解决这些问题时,旋转矢量法的优势得到了完美体现。

2.用旋转矢量计算矢端速度与加速度

    如图3所示,矢端做圆周运动的速率大小为,速度方向与x轴的夹角等于,故速度投影为。矢端所作圆周运动产生的向心加速度大小,它与x轴的夹角为,故加速度投影为。据上述推导可得,简谐振动的位移方程为,微分可得vx==。由旋转矢量的速度和加速度的投影,和简谐振动的运动学微分方程相比得,旋转矢量的端点随圆周方向转动的速度和加速度,在平面坐标轴上的投影恰好相当于给定的简谐振动的位移,速度和加速度。

 D:\My Documents\Tencent Files\1378975124\Image\C2C\88C330579B53951E65915E797A74F730.jpg       C:\Users\Administrator\Desktop\图片1.jpg图片1

3用旋转矢量法研究简谐振动4 旋转矢量与运动图像的对应关系

用旋转矢量说明简谐振动:旋转矢量的长度等于振幅,矢量A叫振幅矢量;简谐振动的圆频率等于矢量转动的角速度;简谐振动的相位等于旋转矢量与x轴的夹角。

3.旋转矢量法确定相位和初相位

旋转矢量法,是在处理简谐振动相关问题时比较直观的一个几何方式。首先,用旋转矢量法求初相位,要用到的公式是,由图4图像可知,t=0时位于最高点,在旋转矢量的图像上对应于圆形的最右边的那个点(与x轴的交点),我们就叫它起始点。在得知要求的质点的初始位置后,接着我们要找到它在旋转矢量的图像上所对应的点(看它的位置和方向),称此点为终点,然后,沿圆形从起始点指向终点,所经过的角度就是要求的初相位了。求在任一时刻的末相位时,先使A的周角速度为ω在平面上绕O点逆时针旋转,当此旋转矢量围绕坐标原点转动了一周及一个完整周期的运动。任一时间,旋转矢量和x轴线之间的角度都是该时刻的末相位。

4.用旋转矢量法求运动时间间隔t

利用旋转矢量可以求得运动时间间隔,要采用的公式仍然是,在通常情形下求最大位移运动到平衡位置的时间,怎么来应用旋转矢量公式呢。如果知道简谐振动的位移方程为,我们就可以得到在最大位x=A,而此时的t=0,动到平衡位置后,x=0,所以始末二态的相位差∆φ=π/2,而由于A所进行的运动是匀速向圆周,所以,这样这段位移的时间就能算出来。借助旋转矢量A的转动是匀速的[4],通过相位差与角速度的关系计算所需时间,这种方法比三角函数和曲线法求解简单的多,然而也可以简化质点在任意不同状态间所需要的的时间[5]

5旋转矢量法求合振动

如图5,O为坐标原点及振动的平衡位置,振动沿OX轴方向。从O点作两个长度分别为A1、A2的矢量,他们在t=0时与x轴的夹角分别为

矢量的合矢量X轴上的投影M的运动也是简谐振动

D:\My Documents\Tencent Files\1378975124\Image\C2C\C8508CEF4C17F1D0301AF5697A51494D.jpg

5简谐振动的合成

从图中三角形边角关系,很容易得到:

A=

讨论:

(1)当k=0,...)时,

 

A=

=合振动振幅最大

若二分振动相位相同,合振动加强,合振幅等于二分振动振幅之和。

2,(k=0,±1,±2...)时,

A

=   合振动振幅最小。

若二分振动相位相反,合振动削弱,合振幅等于分振动振幅之差。

一般情况<A<,二分振动既不同相不反相,合振动振幅在两者之和和两者之差的绝对值之间。

综上所述:通过对上述的归类方法和旋转矢量法的综合运用,代替了中学简谐振动中使用的是解析法,而对于三角函数不够扎实的学生,若简单引入旋转矢量法,借助旋转矢量与简谐振动相关量的一一对应便能更直观,更形象地描述简谐振动的变化规律这也对知识的掌握起到促进作用。

参考文献

[1]漆安慎,杜婵英第三版,力学[M].高等教育出版社2012.12.

[2]陈兰莉,大学物理教程(上册)[M].机械工业出版社,2015.01.

[3]全桂英.Mathematica在简谐振动合成分析中的应用[J].安庆师范学院学报(自然科学版),2007(04):80-83.

[4]陈新,王赵,唐敏.教学中旋转矢量法的应用——以简谐振动为例[J].海南广播电视大学学报,2016,17(01):116-120.

[5]朱青.旋转矢量法在“简谐振动”教学中的应用[J].2006.

                                             1