学科分类
/ 4
63 个结果
  • 简介:主要介绍了对一种特殊观测类型(双星定位系统中)的几何定轨方法,该方法将观测中遇到的超越方程组简化成一个线性方程组和一个一元二次方程,然后进行解算,通过一个模拟的双星系统和一组模拟的观测值进行试算的结果表明,如果无测量误差时,对该系统用几何方法定轨的精度可以好于2m,但是当该系统的几何图形较差时,几何定轨方法对测量误差较为敏感,若测量的随机误差为10m,则定轨坐标分量的误差最大可达到400m。这时可利用三阶契比雪夫多项式平滑的方法削弱随拳影响,将几何方法定轨的精度提高到40m。

  • 标签: 双星定轨系统 几何方法 定轨精度 测量误差 定轨原理
  • 简介:GPS无线电掩星技术能提供高精度、高分辨率、全球覆盖的地球电离层和中性层大气剖面。它具有全天候、低费用、无系统长期漂移等优点。从1995年4月至1997年3月,首次GPS/MET试验的成功显示了GPS掩星技术对监测全球大气能够发挥重要的作用,从而成为当前空间探测技术的研究热点之一。该文主要叙述了无线电掩星技术的数据处理系统的有关情况,并介绍了美国UCAR的掩星数据处理系统CDAAC的概况,可作为我国开展无线电掩星计划有关工作的借鉴。

  • 标签: 地球大气 无线电掩星 全球定位系统 数据处理
  • 简介:本文讨论了GPS相对定位中基准站的作用。通过实测资料的解算表明,在区域网的GPS相对定位解算中,为了克服参数之间的强相关性,得到非奇异解,应该固定基准站的坐标或给于它强的先验限制。本文也分析了基准站坐标偏差对基线的长度的影响。

  • 标签: 全球定位系统 天文地球动力学 GPS 基准站 定位精度
  • 简介:提出应用于人造卫星观测中确定拖长星像中心的平均几何中心法,介绍了该方法的基本原理与实现步骤。将中值滤波应用于CCD数据的预处理并收到较好的效果。利用实际观测资料初步验证了平均几何中心法,结果表明,与通常采用的重心法相比,此方法对人卫观测中的拖长星像进行中心定位的精度较高。

  • 标签: 人造卫星观测 中心定位 中值滤波 精度
  • 简介:与Geiger和Santerre的简单的均匀分布假设进行比较,本文较严格地考虑了GPS卫星天空分布密度随赤纬和轨道倾角的变化,研制了SIMSKY软件,采用模拟计算的方法研究了GPS星座对精密定位误差椭球大小和三轴指向的作用;还研究钟差与测站坐标的相关程度。这种方法可以用于研究不同纬度的测站网络对误差椭球和z-t相关性的影响、不同截止高度对误差椭球和高程与时间相关性的影响。

  • 标签: 全球定位系统 GPS卫星 分布函数 定位误差椭球 三轴指向 截止高度角
  • 简介:利用GPS实测资料,对GPS相对定位中对流层折射天顶延迟参数估计方法的单参数法、分段常数法和分段线性法进行了分析,讨论了各种方法的参数估计结果和对相对定位结果的影响。指出单参数方法存在较大的误差,这一误差主要影响基线垂直分量的精度,用分段常数法和分段线性法可明显提高基线垂直分量上的重复率,但这一精度的提高并非随分段数的增加而单调增加,各测站应分别选用各自最合适的模拟估计方法和分段数,才是最合理的。

  • 标签: 全球定位系统 大气折射 GPS 对流层 精度 分段常数法
  • 简介:由理论计算和统计分析估计了佘山40厘米天体测量照相望远镜不同天顶距带内的光谱型差。研究了星等差与观测残差的关系。发现光谱型差和星等差对射电星的光学定位的影响不明显,在归算处理时可以忽略。

  • 标签: 天文望远镜 光谱型差 星等差 射电星 光学定位 射电望远镜
  • 简介:利用上海天文台的SHORDE1软件对约3年左右(MJD49001.1-MJD50109.6)的全球SLR资料进行了归算,并将所得的极移序列和相应历元的国际地球自转服务中心(IERS)给出的极移序列作了比较,分析结果表明:上海天文台基于SLR资料的极移序列与IERS极移序列之间存在一定程度的系统偏差。该系统差具有明显的周期特性,周期约为427天,振幅为1mas左右。

  • 标签: 天文地球动力学 国际地球自转服务 国际极移服务 极移
  • 简介:本文叙述了APPLE-Ⅱ微机控制光电等高仪观测的系统,该系统可以实现自动导星、定位、跟踪与换星。在控制系统中应用了高精度的圆感应同步测角器和简单的恒星时钟卡。该系统的望远镜定位精度达±3″,跟踪精度达±5″。该套设备现在已投入正常使用,对改善观测条件和提高观测质量取得了明显效果。

  • 标签: 光电等高仪 自动观测系统 定位精度 圆感应同步测角器 恒星时钟卡
  • 简介:现代科学技术的很多领域都离不开时间的精密计量。对地球自转不均匀性的测量等系统动力学方面的研究、对人造的或自然的天体运动的研究、对远程或空间运载工具的运行轨道的研究和测控等等,都需要一个高度均匀的时间尺度。高精度频率标准时间的比对,也需要一个均匀的时间尺度做参考。作为最广泛的时间频率信号传播媒介的无线电时号,更需要同步和协调。在此背景下,从七十年代初起,国际原子时被正式定义和采用。目前的国际原子时TAI是由国际计量局BIPM(1988年以前由国际时间局BIH)根据国际单位制系统的时间单位秒的定义,以世界上几十个研究单位运转的200多台原子钟的读数计算建立的时间尺度。

  • 标签: 时号改正数 国际原子时 地球自转 国际时间局 无线电时号 时间尺度