学科分类
/ 25
500 个结果
  • 简介:摘要单相接地是铁路10KV电力线路最常见故障,本文对铁路电力线路发生单相接地系统的电压、电流进行分析。并跟据正常运行小电流接地系统三相电压对称,发生接地时,接地相对地电压降低,非接地相对地电压升高的原理在配电所设置绝缘监视装置,用以快速查明故障。

  • 标签:
  • 简介:摘要:在我国的电网分布中,3~10kV的电网基本都使用中性接地形式,其最大的优势就是在单向故障发生的时候,故障电流数值相对较小,故障容易自行解除,使得整体的电网系统运行可靠性得到了极大的提升,但恰恰因为故障电流数值较小,导致故障定位难度较高。故此,本文针对如何有效快速处理中性接地系统单相接地故障展开了研究探讨。

  • 标签: 中性点不接地系统 单向故障 危害 对策
  • 简介:摘要:阐述在城市10KV配电网中性经小电阻接地系统中,对中性小电阻值的选择以及单相接地故障电流对继电保护装置配置的影响进行具体分析,验证中性经小电阻接地系统采用零序保护投入使用的必要性和可行性。

  • 标签: 中性点小电阻 继电保护配置 零序保护
  • 简介:摘要:本文通过对中性接地系统三相电压不平衡的原因进行分析,比较不同故障导致电压不平衡时电压幅值、零序电压、接地信号的情况,用于快速发现变电站内的电压不平衡的原因,以便于运行人员快速发现故障,快速处理。

  • 标签: 中性点不接地 电压 三相不平衡
  • 简介:摘要:随着社会经济的发展,电网系统的日益庞大,电网故障引起的保护装置跳闸问题也是日益显著,在各种故障类型中,单相接地短路故障约占故障的 80%,为快速辨识出中性直接系统发生单相接地短路故障,本文基于对称分量法对单相接地短路故障进行分析,推导出发生故障时电源侧与负荷侧各相电流的公式,并利用实例进行分析,便于调度人员快速识正确别单相接地短路故障,对于单相接地故障的快速处理提供专业依据。

  • 标签: 电网 中性点直接接地系统 单相接地故障
  • 简介:摘要:我国电力系统中电压等级在 110kV以下的系统中性接地运行,包括中性经消弧线圈接地,高阻抗接地或不接地;电压等级在 110kV及以上采用中性直接运行方式。对于中低压系统电容电流的形成原理有着充分的理论依据,其测试方法也多种多样,但实际中要做到精确测量还需要进一步研究。对于中低压不接地系统的运行方式在我国被广泛采用,其单相接地后仍可运行的优势具有重要的现实意义,因此,对于中压电网的电容电流的测试方法研究具有很强的理论和实际意义。

  • 标签: 电力系统 中性点 电容电流 测试方法
  • 简介:[摘要]中压电力系统中性接地方式是一个复杂的系统性问题,在设计时应该结合不同地区、不同电网、不同的用电需求统筹考虑。针对中压电网单相接地电容电流也在不断的增加,电缆馈线回路的增加,改造和合理选择电网中性接地方式,关系到电网运行的可靠性,文中就电网的中性接地方式进行分析。 

  • 标签: []供电系统 中性点接地 可靠性 
  • 简介:摘要:伴随着我国经济的快速发展,人们对电力能源供应安全性和有效性提出了更高的要求。尤其是在企业的成长过程中, 10kV配电系统中性接地方案规划的合理性和科学性,对企业电力系统持续、稳定的运行有着较大的帮助。不过,从目前情况来看,部分企业在中性接地系统中性直接系统两大方面的可靠性还有待提升,存在着这样、那样的问题,为确保企业的生产安全,企业领导层需提高重视,具体问题具体分析,寻求有效的解决措施,促进企业更好的发展。

  • 标签: 10kV配电 中性点接地 可靠性 问题 解决措施
  • 简介:       摘要:本文主要针对电力工程高压试验大厅的接地设计展开分析,论述了接地设计的具体方法和具体的对策,希望能够为今后电力工程高压试验大厅的设计工作带来参考,从而不断提升电力工程高压试验大厅的设计效果,供借鉴。          关键词:电力工程;高压试验大厅;接地设计          前言          随着我国电力工程的不断增多,做好电力工程各个方面的工作就显得极为重要,因此,我们有必要深入分析电力工程高压试验大厅的接地设计问题,提出更好的设计方案。          1 电力工程接地网          电力工程接地网是用于工作接地、防雷接地、保护接地的重要设施,是确保人身、设备、系统安全的重要环节。当事故出现时,如接地网有缺陷,短路电流无法在土壤中充分扩散,导致接地网电位升高,使接地的设备金属外壳带高电压而危及人身安全和击穿二次保护装置绝缘,甚至破坏设备,扩大事故,破坏系统稳定。实际应用中,铁质接地网腐蚀严重,导致接地线截面减小、热稳定性不够、接地电阻增大。因而必须采取一定的措施防止接地网的腐蚀。          2 高压试验室接地网的设计          接地系统是保障电力系统正常运行,防止人身电击事故,预防电气火灾,防止雷击和静电损害人民生命与财产安全的基本措施。下面以某高压试验室为例介绍高压试验室接地网的设计。该试验室是进行高压测试和模拟的试验室,试验室配备有 500kV 工频试验变压器、 1200kV 冲击电压发生器和 ±600kV 直流高压发生器各一台。由于试验室一侧靠近山边,一侧靠近公路,土壤结构复杂,土壤下层为岩石。为了防止低电位反击和使用设备产生静电感应,必须给该试验室设计独立的接地网。          2.1 土壤电阻率的测量          采用四级法分别测量试验室所在地两侧的土壤电阻率,测量仪器采用 ZC29B-2 型接地电阻测试仪,测量时已连续 3d 晴天。          根据测量结果,在靠公路一侧土壤宜分为两层考虑, 0~4m 范围土壤电阻率变化较快,可取 45Ω/m , 4m 以下取 8Ω/m; 靠山一侧土壤电阻率明显大于公路侧,其原因可能是地下构成为岩石。若也分为两层考虑,则 0~3m 范围土壤电阻率可取 150Ω/m , 3m 以下取 120Ω/m 。          2.2 地网接地电阻等的计算          ( 1 )接地电阻值、最大接触电压和最大跨步电压的计算          利用靠山一侧实测的土壤电阻率数据,通过 CDEGS 软件 (CDEGS 软件是由加拿大 SES 公司开发,解决电力系统接地、电磁场和电磁干扰等工程问题的强大工具软件,并可以解决阴极保护等问题。 ) 的 RESAP 模块计算得到所需地网模型。          考虑季节因素,上层土壤电阻率取 152.7Ω/m ,上层土壤厚度取 2.8m ,下层土壤电阻率取 24.7Ω/m 。入地电流为 10A ,计算得到的接地电阻为 1.1037Ω ,最大接触电压和最大跨步电压分别 8.247V 和 3.435V 。 (2) 降低地网的接地阻值计算得到的接地电阻的阻值 (1.1037Ω) 大于 1Ω ,为了降低地网的接地阻值,在原地网设计中再增加 17 根离子棒接地极,可以有效降低地网接地电阻至 0.6Ω 左右。另外,为了减小杂散电容对测量系统的影响,建议在试验设备的底部使用铁板铺垫,测量线路从铁板上的开口进入地下电缆沟再引入控制室。          3 高压试验厅电气安全管理措施          3.1 防止感应电压和放电反击的措施          进行高压试验时,试验设备邻近的其他仪器设备应采用防止感应电压的措施,将邻近的其他仪器设备短接并可靠接地。在电容器室设置专用的短路接地井与接地系统连接,试验室闲置的电容设备应短路接地。          为防止高压试验时电磁场影响和地电位升高引起反击,试验室应有相应安全技术措施。由于试验厅是一个封闭的六面屏蔽体,在试验厅内可以方便地做到等电位联结。但在试验放电的瞬间,六面屏蔽体与建筑周边会因局部地电位升高而产生电位梯度,因此进入试验厅的高压电缆应加金属管保护埋地敷设,金属保护管的长度不小于 15m ,每隔 5m 与接地极连接。处于六面屏蔽法拉第笼周边及人员出入口应采取均压或绝缘等减小跨步电压的措施,接地网均压环的外缘应闭合,外缘角做成圆弧形;圆弧的半径不宜小于均压带间距的 1 / 2 ,经常有人出入处铺设沥青路面或在地下装设两条与接地网相连的 “ 帽檐式 ” 均压带。          3.2 电源联锁和门禁系统          通往试验区的外门、内门与各试验区间的隔离遮栏均需装设门扣和门磁开关,在控制室应能反映出门的开闭状态,每个试验区的出入门和本试验区的试验电源应有联锁。在 3 次广播清场后试验区的所有出入门全部关闭,才能手动接通该试验区的试验电源;当通往该试验区的任一出入门打开时,应发出报警信号,并使该试验区的试验电源跳闸。在试验区关闭门后,应挂上 “ 进行试验,严禁入内 ” 的安全标示牌或点亮安全信号标示灯,以防人员误闯入试验区。          3.3 消防措施          由于高压试验厅分成几个试验区,当某个试验区在进行试验时,该试验区处于无人有 ( 高压 ) 电的状态,而同时相邻试验区有可能处于有人无 ( 高压 ) 电的准备状态,因此需在试验状态下考虑消防通道的设计,即各个试验区在相邻试验区进行试验时不应将相邻试验区作为消防通道,要求试验厅周围应有消防通道,并保证畅通无阻。同时要求试验厅内的地面平整,留有符合要求、标志清晰的通道,室内布置整洁,不许随意堆放杂物。          高压试验厅安装的是变压器、分压器、电抗器、电容器、配电屏、控制屏、电线电缆等设备,属于 E 类火灾场所。同时规程规定,试验人员离开试验室前应切断有关电源,也就是说高压试验厅只能在有人工作的情况下进行 ( 带高压电 ) 试验或 ( 带低压电 ) 准备。高压试验厅的建筑高度一般为 20 ~ 35m ,由于高度过高,一般的感烟探测器不起作用,而采用摄像监视加电气仪表监视其灵敏度远大于造价较高的极早期烟雾报警系统。由于高压试验时试验区处于无人状态,试验送电时通过摄像机对试验件的监视十分必要,试验人员可以在发生突发状况的第一时间在控制室切断试验电源。因试验工位是固定的,摄像机可采用固定焦距;对于有一定高度的高挂试验区,可在同一平面位置上下设置两个摄像机。高压试验厅不能设置水喷淋,应选择适合扑灭电气火灾的干粉灭火器或 CO :灭火器。高压电容室、变配电室、控制室等应设置火灾报警探测器,消防通道应设置疏散照明。         3.4 电力变压器高压试验的安全设计方法         3.4.1. 做好相应的保护措施         在试验的过程中,要在试验设备和其他的设备之间通过短接并且接地的方式防止感应电压和电流过大现象的出现。在实验室中要严格按照规定,将不同规格的电容设备同样进行短接接。         为了防止在试验的过程中出现的瞬间放电,需要在高压电缆上增加金属管进行保护,并且埋地敷设。通常情况下,为了安全起见,一般将金属保护管的长度控制在远大于 15 米以上,并且当每隔 5 米时,要与地极连接,这样能够很好的降低放电反击现象的机率。         (二)可靠的接地         保证好接地系统的完整性,接地电阻在 0.5Ω 以下,这样能够保证工作人员和设备的安全。所有的金属仪器和设备外壳都必须良好接地,在这其中需要着重强调变压器与试验设备的连接,必须是安全可靠牢固的金属性连接,而且在试验地点要标注相应的位置,统一符号,避免了试验中人员触电的危险性。         (三)防火防爆         在试验进程中,要特别注意绝缘油在高温等因素下产生的各种变化,很可能导致气压增加引起变压器外壳爆炸带来不良后果。一旦变压器外壳爆炸,便会引起绝缘油的喷出和燃烧,后果不堪设想。所以,在试验进程中,应把安全性放在第一位。          结语          综上所述,只有了解了设计的方法和设计的要求,针对设计的各个环节进行研究,才能够让设计更加的有意义,提升电力工程高压试验大厅的设计的质量。          参考文献          [1] 杨勤林 . 工厂接地系统的重要性分析 [J]. 科技创新与应用 .2016(24):13.          [2] 王富波 . 变电站接地系统现状及思考 [J]. 电气制造 .2016(07):67.

  • 标签:
  • 简介:         摘要:本文主要针对电力工程高压试验大厅的接地设计展开分析,论述了接地设计的具体方法和具体的对策,希望能够为今后电力工程高压试验大厅的设计工作带来参考,从而不断提升电力工程高压试验大厅的设计效果,供借鉴。          关键词:电力工程;高压试验大厅;接地设计          前言          随着我国电力工程的不断增多,做好电力工程各个方面的工作就显得极为重要,因此,我们有必要深入分析电力工程高压试验大厅的接地设计问题,提出更好的设计方案。          1 电力工程接地网          电力工程接地网是用于工作接地、防雷接地、保护接地的重要设施,是确保人身、设备、系统安全的重要环节。当事故出现时,如接地网有缺陷,短路电流无法在土壤中充分扩散,导致接地网电位升高,使接地的设备金属外壳带高电压而危及人身安全和击穿二次保护装置绝缘,甚至破坏设备,扩大事故,破坏系统稳定。实际应用中,铁质接地网腐蚀严重,导致接地线截面减小、热稳定性不够、接地电阻增大。因而必须采取一定的措施防止接地网的腐蚀。          2 高压试验室接地网的设计          接地系统是保障电力系统正常运行,防止人身电击事故,预防电气火灾,防止雷击和静电损害人民生命与财产安全的基本措施。下面以某高压试验室为例介绍高压试验室接地网的设计。该试验室是进行高压测试和模拟的试验室,试验室配备有 500kV工频试验变压器、 1200kV冲击电压发生器和 ±600kV直流高压发生器各一台。由于试验室一侧靠近山边,一侧靠近公路,土壤结构复杂,土壤下层为岩石。为了防止低电位反击和使用设备产生静电感应,必须给该试验室设计独立的接地网。          2.1 土壤电阻率的测量          采用四级法分别测量试验室所在地两侧的土壤电阻率,测量仪器采用 ZC29B-2型接地电阻测试仪,测量时已连续 3d晴天。          根据测量结果,在靠公路一侧土壤宜分为两层考虑, 0~4m范围土壤电阻率变化较快,可取 45Ω/m, 4m以下取 8Ω/m;靠山一侧土壤电阻率明显大于公路侧,其原因可能是地下构成为岩石。若也分为两层考虑,则 0~3m范围土壤电阻率可取 150Ω/m, 3m以下取 120Ω/m。          2.2 地网接地电阻等的计算          ( 1)接地电阻值、最大接触电压和最大跨步电压的计算          利用靠山一侧实测的土壤电阻率数据,通过 CDEGS软件 (CDEGS软件是由加拿大 SES公司开发,解决电力系统接地、电磁场和电磁干扰等工程问题的强大工具软件,并可以解决阴极保护等问题。 )的 RESAP模块计算得到所需地网模型。          考虑季节因素,上层土壤电阻率取 152.7Ω/m,上层土壤厚度取 2.8m,下层土壤电阻率取 24.7Ω/m。入地电流为 10A,计算得到的接地电阻为 1.1037Ω,最大接触电压和最大跨步电压分别 8.247V和 3.435V。 (2)降低地网的接地阻值计算得到的接地电阻的阻值 (1.1037Ω)大于 1Ω,为了降低地网的接地阻值,在原地网设计中再增加 17根离子棒接地极,可以有效降低地网接地电阻至 0.6Ω左右。另外,为了减小杂散电容对测量系统的影响,建议在试验设备的底部使用铁板铺垫,测量线路从铁板上的开口进入地下电缆沟再引入控制室。          3 高压试验厅电气安全管理措施          3.1 防止感应电压和放电反击的措施          进行高压试验时,试验设备邻近的其他仪器设备应采用防止感应电压的措施,将邻近的其他仪器设备短接并可靠接地。在电容器室设置专用的短路接地井与接地系统连接,试验室闲置的电容设备应短路接地。          为防止高压试验时电磁场影响和地电位升高引起反击,试验室应有相应安全技术措施。由于试验厅是一个封闭的六面屏蔽体,在试验厅内可以方便地做到等电位联结。但在试验放电的瞬间,六面屏蔽体与建筑周边会因局部地电位升高而产生电位梯度,因此进入试验厅的高压电缆应加金属管保护埋地敷设,金属保护管的长度不小于 15m,每隔 5m与接地极连接。处于六面屏蔽法拉第笼周边及人员出入口应采取均压或绝缘等减小跨步电压的措施,接地网均压环的外缘应闭合,外缘角做成圆弧形;圆弧的半径不宜小于均压带间距的 1/ 2,经常有人出入处铺设沥青路面或在地下装设两条与接地网相连的“帽檐式”均压带。          3.2 电源联锁和门禁系统          通往试验区的外门、内门与各试验区间的隔离遮栏均需装设门扣和门磁开关,在控制室应能反映出门的开闭状态,每个试验区的出入门和本试验区的试验电源应有联锁。在 3次广播清场后试验区的所有出入门全部关闭,才能手动接通该试验区的试验电源;当通往该试验区的任一出入门打开时,应发出报警信号,并使该试验区的试验电源跳闸。在试验区关闭门后,应挂上“进行试验,严禁入内”的安全标示牌或点亮安全信号标示灯,以防人员误闯入试验区。          3.3 消防措施          由于高压试验厅分成几个试验区,当某个试验区在进行试验时,该试验区处于无人有 (高压 )电的状态,而同时相邻试验区有可能处于有人无 (高压 )电的准备状态,因此需在试验状态下考虑消防通道的设计,即各个试验区在相邻试验区进行试验时不应将相邻试验区作为消防通道,要求试验厅周围应有消防通道,并保证畅通无阻。同时要求试验厅内的地面平整,留有符合要求、标志清晰的通道,室内布置整洁,不许随意堆放杂物。          高压试验厅安装的是变压器、分压器、电抗器、电容器、配电屏、控制屏、电线电缆等设备,属于 E类火灾场所。同时规程规定,试验人员离开试验室前应切断有关电源,也就是说高压试验厅只能在有人工作的情况下进行 (带高压电 )试验或 (带低压电 )准备。高压试验厅的建筑高度一般为 20~ 35m,由于高度过高,一般的感烟探测器不起作用,而采用摄像监视加电气仪表监视其灵敏度远大于造价较高的极早期烟雾报警系统。由于高压试验时试验区处于无人状态,试验送电时通过摄像机对试验件的监视十分必要,试验人员可以在发生突发状况的第一时间在控制室切断试验电源。因试验工位是固定的,摄像机可采用固定焦距;对于有一定高度的高挂试验区,可在同一平面位置上下设置两个摄像机。高压试验厅不能设置水喷淋,应选择适合扑灭电气火灾的干粉灭火器或 CO:灭火器。高压电容室、变配电室、控制室等应设置火灾报警探测器,消防通道应设置疏散照明。         3.4 电力变压器高压试验的安全设计方法         3.4.1. 做好相应的保护措施         在试验的过程中,要在试验设备和其他的设备之间通过短接并且接地的方式防止感应电压和电流过大现象的出现。在实验室中要严格按照规定,将不同规格的电容设备同样进行短接接。         为了防止在试验的过程中出现的瞬间放电,需要在高压电缆上增加金属管进行保护,并且埋地敷设。通常情况下,为了安全起见,一般将金属保护管的长度控制在远大于 15米以上,并且当每隔 5米时,要与地极连接,这样能够很好的降低放电反击现象的机率。         (二)可靠的接地         保证好接地系统的完整性,接地电阻在 0.5Ω以下,这样能够保证工作人员和设备的安全。所有的金属仪器和设备外壳都必须良好接地,在这其中需要着重强调变压器与试验设备的连接,必须是安全可靠牢固的金属性连接,而且在试验地点要标注相应的位置,统一符号,避免了试验中人员触电的危险性。         (三)防火防爆         在试验进程中,要特别注意绝缘油在高温等因素下产生的各种变化,很可能导致气压增加引起变压器外壳爆炸带来不良后果。一旦变压器外壳爆炸,便会引起绝缘油的喷出和燃烧,后果不堪设想。所以,在试验进程中,应把安全性放在第一位。

  • 标签:
  • 简介:摘 要:在电力系统当中,做好接地保护,有助于电力系统的顺利运行,对于供电安全有重要意义。对于现有小电阻接地系统接地保护选择性差、灵敏度低且高阻接地故障检测能力不足等问题,本文研究分析了小电阻接地系统单相接地故障后零序电流特征,利用上下级纵向配合,提出基于零序过电流的多级接地保护和延时低定值高灵敏度接地保护,给出保护配置方案和各级保护整定原则。利用线路出口和中性线零序电流幅值横向比较,提出高阻接地故障选线方法。希望以此保证接地安全,防治接地故障,使电力系统安全稳定地运行。

  • 标签: 小电阻接地系统 接地保护 零序电流 高阻接地 综合保护
  • 简介:摘要:电力系统中性接地方式就是电力系统当中,变压器或者发电机中性和地之间所采用的连接方式。通过大量的实践发现,选用恰当的中性接地方式非常重要,不但对电力系统的电流起到一定的抑制作用,还可以对过电压的水平进行有效的控制。本文主要探讨 电力系统中性接地方式与供电安全。

  • 标签: 电力系统 中性点接地 方式 供电安全
  • 简介:摘要: 电力系统中绝大多数故障都是单相接地故障。为提高其动作灵敏性,均装设专门的接地保护装置。该装置构成简单,易于实现。通常反映接地故障时的零序电流和电压,称为零序保护装置。而中性接地中性经消弧线圈接地系统在发生单相接地故障时,由于故障电流小,线电压仍然对称,系统还可以持续运行 1-2小时,故称为小电流接地系统。除非有特殊要求,该系统接地保护才作用于跳闸,否则接地保护只作用于信号,提醒运行人员注意。

  • 标签: 电力系统 性点接地方式 供电安全 研究
  • 简介:摘要:现阶段电力系统建设对于社会发展有着重要作用,各部门重视对电力系统的优化,从而降低电力事故出现的可能性。本文主要介绍了中性接地方式对于供电网络与供电系统的影响,并且提出了两优化措施,提高整体电力系统的安全性,以供相关工作人员借鉴分析。

  • 标签: 电力系统 中性点接地 供电安全 自动化水平
  • 简介:【摘要】 : 配网中性接地方式的选择跟接地故障处理关联十分紧密,共同影响到了供电的可靠性。现如今针对配网中性接地方式的选择,国内外还没有一致的规范,通常是从本身具体的网架情况以及运行经验来开展确定。现如今,不接地、经低电阻接地以及经消弧线圈接地方式并存,仍然更多的选择不接地跟经消弧线圈接地的小电流接地形式。本文首先阐述了不同中性接地方式特点,接着针对中性接地方式的选取进行分析,针对接地故障提出处理对策。以便相关专业的人员提供参考与借鉴。

  • 标签: 配网中性点 接地方式 接地故障
  • 简介:摘要 :分析表明,单相接地产生的电容电流会燃烧堆芯。描述了发电机柱接地的作用。了解几种主要的中性接地方式。为两个主要的接地方式在我国目前使用的 , 应当考虑所有因素 , 诸如故障电流、过电压和组成 , 保护接地 , 并选择最好的接地方式根据国家和国际经验。

  • 标签: 发电机 中性点 接地方式 变压器 消弧线圈
  • 简介:  摘要: 小电流接地系统特别是35KV及以下的小接地系统,由于线路分支多,走向复杂,电压等级较低,在设计施工中质量不易保证,运行中发生接地故障的几率很高。为了便于电网值班人员准确判断接地类别,及时处理故障,保证电网的安全可靠运行,提高用户电能质量。本文通过对兴义市地方电网的运行实践,从小接地系统绝缘监察装置的构成及动作原理,历年接地故障情况的统计、接地原因、故障判别及预防接地的措施等几个方面进行分析,对运行值班人员和工程技术人员有一定的借鉴作用。

  • 标签: 小电流接地 原因分析 对策
  • 简介:摘要:防雷接地施工是建筑电气安装工程中的重要环节,直接影响电气工程的安装质量。在建筑电气安装过程中,要加强对防雷接地技术的重视,优化设计方案,强化施工过程管理,保障电气安装工程质量。

  • 标签: 建筑电气 防雷接地 施工 
  • 简介:摘要: 近年来,邮电通信事业蓬勃发展,通信手段越来越丰富,楼内通信设备种类也越来越繁多。而这些通信设备的正常运行都需要一个完整、有效、可靠的接地系统来保证。本文分析了通信建筑接地系统设计。

  • 标签: 通信建筑 接地系统 设计