学科分类
/ 25
500 个结果
  • 简介:以对称2倍升压型开关电容变换电路分析了变换电压变换的实现原理,并给出了该变换电路进行多种波形变换的实验结果.理论分析和仿真指出了在高频输入时变换电路输出波形会产生一定程度失真的局限,还综合分析了降低输出波形失真度与保证电路稳态变比及效率间的矛盾.根据信号完整性理论,该开关电容变换电路运用于多种波形变换时输入电源频率不能超过一定上限值.

  • 标签: 开关电容变换器 升压变换器 AC-AC变换 DC-DC变换 瞬态分析
  • 简介:经典的DC/DC变换,如Buck变换,Boost变换,Buck-Boost变换,罗氏变换和Cuk变换,通常都是由电感和电容组成,所以它们的尺寸大且功率密度低。开关电容已被成功地应用于无感DC/DC变换中,开拓了设计高功率密度变换的方法。然而,在文献中已有的多数变换都是单象限运行。其中一些变换工作在推挽状态下,它们的控制电路和拓朴是很复杂的。本文介绍一种四象限开关电容DC/DC罗氏变换。文中的分析和计算已得到试验测试结果的验证。

  • 标签: 四象限运行 开关电容 电压举升技术 直流变换器
  • 简介:提出了一种变比为3的交流-交流升压型开关电容变换.该变换结构十分简单,输出效率高,功率密度大,而且其开关元件的PWM控制方式简单,主要基于开关电容原理实现电能转换.文中给出了该变换电路的工作过程和控制驱动方法,对交-交变换时的电压变比进行了基于工作过程中暂态方程的理论建模分析,建立了等效内阻的数学模型,分析了稳态电压变比,并建立电路参数和变换性能之间的函数关系.搭建了原型样机,通过实验验证理论的正确性.

  • 标签: 升压变换器 开关电容变换器 理论建模 AC-AC变换 电压变比
  • 简介:开关型功率变换的传统控制方式是电压型控制。输出电压信号与给定值比较,通过脉宽调制电路产生占空比脉冲,驱动功率开关。占空比的调制方向是减少电压误差,实现负反馈控制。前馈是一种开环补偿技术。电流型(双环)控制已广泛应用于开关稳压电源。近年开发或应用的新技术还有:电荷控制、单周控制等。磁调节控制多路输出开关电源的非主要输出,也称后置调节

  • 标签: 单环反馈控制 电压型 电流型 双环 前馈 电荷控制
  • 简介:摘要近年来,随着工业技术的进步和认识的深入,超级电容的发展就不断地推陈出新。近年来,超级电容器得到了发展,超级电容是一种新型电力储能器件,主要的工作原理是双电层原理,这个原理是在1879年被德国人亥姆霍兹(Helmholtz)发现。超级电容器主要的特点就是电容量极大,良好的情况下甚至可以达数千法拉,同时还具有工作温度范围宽、循环寿命长、环境友好、免维护等等的优点,这些优点都是促使超级电容器发展的重要推动力。本文将重点分析超级电容储能型变换的研究。

  • 标签: 超级电容器 储能型 变换器
  • 简介:摘要:对开关变换来说,多频率控制中仍会有一定的输出电压偏差。本文以Buck变换为例,梳理控制脉冲功率、输出电压二者的数学关系,并借此提出了数字双功率控制技术。依托数字控制,该技术能够对脉冲的功率加以调节,确保输出电压的安全。同时,介绍公式推导的全部过程,从理论上验证该控制技术的优越性。研究认为,在空载状态下,该技术能够对宽输出功率进行调节。在不增加输出电压纹波的基础上,减小电压偏差,改善电路线段的稳态性能。

  • 标签: 开关变换器 DBP控制技术 稳态性能
  • 简介:摘要本文分析了开关电源的发展现状及基本结构,研究了ZVT一Boost软开关电路的基本结构、在此基础上确定了主电路参数,分析了采用UC3845功率因数控制电路。

  • 标签: 开关电源,功率因数校正,软开关
  • 简介:摘要开关电源以其体积小、重量轻和效率高的优点而得到了越来越广泛的应用和重视。开关变换能够将一种直流电能转换成另一种或多种直流电能,是直流开关电源的主要组成部分。开关变换与控制电路相互配合,共同工作,因此,研究开关变换调制与控制技术具有重要意义。本文简单分析了开关变换结构及分类,并探讨了具体的调制与控制技术。

  • 标签: 开关变换器 开关电源 调制与控制技术
  • 简介:设计了一种电流控制型软开关变换电路,电路采用普通PWM芯片设计完成,未采用复杂的相移原理,因此结构简单。而且,此原理既可用于全桥电路也能用于推挽电路。文中给出了理论分析和实验结果,

  • 标签: 电流控制型 变换器 PWM芯片 软开关 推挽电路 相移
  • 简介:本文提出一种新型Boost软开关变换。由于传统Boost变换开关过程中会产生开关损耗,将会导致整个系统的效率降低。本文提出一种由辅助开关和共振电路实现的软开关电路。通过使用软开关,使变换开关损耗大大降低。这种新型的软开关技术可以应用在光伏发电、功率因数补偿等方面。详细分析了这种变换各阶段工作模态的等效电路和实现软开关的条件,并且通过MATLAB/Simulink进行仿真分析。仿真结果表明,所有的开关电路均工作于软开关状态,同时变换的效率得到了提高。

  • 标签: BOOST变换器 软开关 MATLAB/SIMULINK
  • 简介:针对开关变换,基于高频、大信号离散时间模型,应用动态规划的原理,研究了一种非线性离散时间的控制方法.在一个开关周期内,以周期末输出电压偏差最小为目标确定最优导通比;为保证全局范围内调节性能最好,设计了能量函数对导通比进行校核和修正;进一步将一个开关周期的输出电压偏差最小与能量校校依不同调节范围按不同比例进行组合,得到了完整的目标函数.由该目标函数可根据初始状态和性能指标实施快速准确的控制.

  • 标签: 开关变换器 非线性 离散 模型 控制
  • 简介:摘要谐振型变换作为一种软开关变换技术,具有体积小、开关频率高、开关损耗小、效率高等优点。本文主要对LC串联谐振变换与LLC谐振变换的原理和结构等展开了分析和比较,希望为突破硬开关的瓶颈,减小开关损耗即实现开关管的软开关有一定的借鉴意义。

  • 标签: 谐振变换器 开关变换 分析比较
  • 简介:对于工作在软开关和硬开关两种模式下的推挽结构的DC/DC变换作了比较研究,分析了它们各自的优缺点,并从工程应用角度出发,研制了一台300W的DC/DC变换

  • 标签: 推挽变换器 串联谐振 软开关 硬开关
  • 简介:针对于超级电容串联储能系统中单体电压不均衡的问题,本文介绍了一种基于半桥变换和首尾次序耦合变压的均压电路。利用次序耦合绕组可以减小因变压单元漏感误差而引起的超级电容单体电压不均衡。该电路结构简单,还可以均衡超级电容器的电压,恒定开关频率和占空比,不需要反馈控制环节。通过分析半桥变换每个工作模态,建立了输出电压方程,推导了串联超级电容电压均衡方程。根据电路特性,分析了变压匝比设计方程及实现软开关变压原边漏感要求。仿真及实验结果表明此均压电路具有均压速度快且均压效果好的特点。

  • 标签: 半桥变换器 次序耦合 超级电容器 电压均衡
  • 简介:摘要:以工作于二次型变换为研究对象,为提高其负载瞬态响应速度,提出电容电流型单周(Capacitive Current Mode One-Cycle Control, CC-OCC)控制二次型变换,详细分析其工作原理。在此基础上,搭建仿真电路,与传统电压型(Voltage Mode Control, VMC)控制二次型变换进行对比,进而分析电路的负载瞬态性能。研究发现:与VMC控制二次型变换,CC-OCC控制方法有效提升了电路的负载瞬态性能。

  • 标签: 二次型变换器 CC-OCC控制 瞬态性能
  • 简介:基于三开关管Buck拓扑变换、改进型RCD自举电路和单片机TMS320F28027,研制了一套太阳能路灯照明系统用光伏控制。本文详细叙述了光伏控制的硬件电路设计,以及蓄电池充电控制策略、功率跟踪控制策略和同步整流技术的充电控制策略,并给出了综合控制方案。最后对试制的样机进行测试验证,分析光伏控制输入/输出电压和功率的变化,其中最大功率点时效率可达到94.05%,验证了设计的合理性和高效性。

  • 标签: 光伏控制器 降压斩波 同步整流 最大功率点跟踪 效率
  • 简介:《大容量多电平变换》一书是将清华大学电力电子及电机控制实验室10年来积累的关于高压大容量多电平变换技术的大量文献、理论研究成果和工业应用经验,系统的整理和总结。本书由清华大学李永东教授主编。该书以高压变频的应用为出发点,结合电力电子电路的基本规律,详细介绍了多电平变换技术的主电路结构及分类、分析其工作原理以及相应的控制算法,并结合工程实践给出了几个有代表性的实际系统设计实现的例子,如三电平供电矢量控制和直接转矩控制系统的实现,及多电平变换在高压大容量调速系统和有源滤波系统中的应用等。此外,该书还介绍了目前国际上较新的研究课题,如多电平变换的通用PWM控制技术等。

  • 标签: 书刊介绍 直接转矩控制系统 电力电子电路 高压变频器 PWM控制技术 工业应用
  • 简介:        摘要:在许多应用中 , 数据链之间需要 ( 甚至是必要的 ) 非直接的 ( 导电 ) 连接 , 从而在提供数据的同时避免来自系统某一部分的危险电压 ( 或电流 ) 对其另一部分造成破坏 , 造成这种破坏性失效的可能是电源质量低劣 , 接地故障 , 雷击和浪涌等各种故障 . 此外 , 通信节点的间距可能相当大 , 常常由不同接地区域的 AC 插座来给这些节点供电 , 这些接地区域之间的电位差 ( 可能含有 DC 偏压 ,50HZ 的 AC 谐波和各种瞬态噪声分量 ) 也会造成破坏 . 在实际工程使用中 , 经常发生通过电缆逻辑接地或屏蔽将这些地线连接在一起的情况 , 可能形成接地环路 , 且电流将流入该电缆 . 接地环路电流会对通信产生严重影响 ,         关键词:隔离变换;电路板;作用分析         1 电感的定义         1.1 电感的定义         电感是导线内通过交流电流时,在导线的内部及其周围产生交变磁通,导线的磁通量与生产此磁通的电流之比。当电感中通过直流电流时,其周围只呈现固定的磁力线,不随时间而变化;可是当在线圈中通过交流电流时,其周围将呈现出随时间而变化的磁力线。根据法拉弟电磁感应定律---磁生电来分析,变化的磁力线在线圈两端会产生感应电势,此感应电势相当于一个“新电源”。当形成闭合回路时,此感应电势就要产生感应电流。由楞次定律知道感应电流所产生的磁力线总量要力图阻止原来磁力线的变化的。由于原来磁力线变化来源于外加交变电源的变化,故从客观效果看,电感线圈有阻止交流电路中电流变化的特性。电感线圈有与力学中的惯性相类似的特性,在电学上取名为“自感应”,通常在拉开闸刀开关或接通闸刀开关的瞬间,会发生火花,这就是自感现象产生很高的感应电势所造成的。总之,当电感线圈接到交流电源上时,线圈内部的磁力线将随电流的交变而时刻在变化着,致使线圈不断产生电磁感应。这种因线圈本身电流的变化而产生的电动势 ,称为“自感电动势”。         1.2 作用         普通双绕组变压的一、二次侧所连接的电路之间是绝缘的。因此可以说,双绕组变压的一、二次侧所连接的电路处于电气隔离状态。其隔离原理就是变压的工作原理,是利用电磁感应定律工作的原理。变压工作时,一次绕组通入交流电后,将在其铁心中产生交变磁通,交变磁通又将在一、二次绕组感应电动势。二次绕组感应电动势后就可向二次电路提供交流电压,当二次绕组带负载后有电流流过时,将对磁路的磁通产生影响,从而引起一次绕组的电流发生变化。虽然变压的一、二次绕组之间没有直接的电气连接,但通过其磁路中的磁通变化,一次绕组的电能就可以传输给二次绕组。这就是变压的工作原理,也是其一、二次绕组之间存在电气隔离的原理。         电气隔离的作用主要是减少两个不同的电路之间的相互干扰。例如,某个实际电路工作的环境较差,容易造成接地等故障。如果不采用电气隔离,直接与供电电源连接,一旦该电路出现接地现象,整个电网就可能受其影响而不能正常工作。采用电气隔离后,该电路接地时就不会影响整个电网的工作,同时还可通过绝缘监测装置检测该电路对地的绝缘状况,一旦该电路发生接地,可以及时发出警报,提醒管理人员及时维修或处理,避免保护装置跳闸停电的现象发生。         隔离变压要根据电源和实际设备的电压等级选定,若实际设备与电源电压等级相同,可以采用变压比为 1 的变压。但是必须注意,隔离变压不能采用自耦变压(因为自耦变压的一、二次绕组之间本身就存在直接的电气联系,也就是说是不绝缘的,因此不能用来作为电气隔离用)。对于安全性能要求较高的场合,可以采用专门的隔离变压。         一般工业控制系统既包括弱电控制部分,又包括强电控制部分。为了使两者之间既保持控制信号联系,又要隔绝电气方面的联系,即实行弱电和强电隔离,是保证系统工作稳定,设备与操作人员安全的重要措施。         电气隔离目的之一是从电路上把干扰源和易干扰的部分隔离开来,从而达到隔离现场干扰的目的。         2 实现隔离的方法         隔离要求信号通过隔离阻障传输,不能有直接电气连接。常用的非接触式信号传输器件有发光二极管 (LED) 、电容、电感等。此类器件的基本原理即是最常见的三种隔离技术:光电、电容、及电感耦合。 光电隔离 LED 能在通电时发光。光电隔离利用 LED 与光电探测设备实现隔离阻障,通过光来传输信号。光电探测设备接受 LED 发出的光信号,再将其转换成原始电信号。                 光电隔离光电隔离是最常用的隔离方法。使用光电隔离的优势是能够避免电气与磁场噪声。而缺点则是传输速度受限于 LED 的转换速度、高功率散射及 LED 磨损。         2 数字电路的隔离         与模拟系统类似,一套控制装置,或者一台电子电气设备,通常所包含的数字系统有:数字信号输入系统,数字信号输出系统。数字量输入系统主要采用脉冲变压隔离,光电耦合隔离 ; 而数字量输出系统主要采用光电耦合隔离,继电器隔离,个别情况也可采用高频变压隔离。         2.1 光电耦合隔离         这种隔离方法是用光电耦合把输入信号与内部电路隔离开来,或者是把内部输出信号与外部电路隔离开来。目前,大多数光电耦合器件的隔离电压都在 2.5kV 以上,有些器件达到了 8kV ,既有高压大电流大功率光电耦合器件,又有高速高频光电耦合器件 ( 频率高达 10MHz) 。常用的器件如: 4N25 ,其隔离电压为 5.3kV;6N137 ,其隔离电压为 3kV ,频率在 10MHz 以上。         2.2 脉冲变压隔离         脉冲变压的匝数较少,而且一次绕组和二次绕组分别绕于铁氧体磁芯的两侧,这种工艺使得它的分布电容特小,仅为几个 pF ,所以可作为脉冲信号的隔离元件。脉冲变压传递输入、输出脉冲信号时,         不传递直流分量,因而在微电子技术控制系统中得到了广泛的应用。一般地说,脉冲变压的信号传递频率在 1kHz ~ 1MHz 之间,新型的高频脉冲变压的传递频率可达到 10MHz 。是脉冲变压的示意图。脉冲变压主要用于晶闸管 (SCR) 、大功率晶体管 (CTR) 、 IGBT 等可控器件的控制隔离中。脉冲变压的应用实例。         2.3 继电器隔离         继电器是常用的数字输出隔离元件,用继电器作为隔离元件简单实用,价格低廉。在该电路中,通过继电器把低压直流与高压交流隔离开来,使高压交流侧的干扰无法进入低压直流侧。         3 模拟电路与数字电路之间的隔离         一般地说,模拟电路与数字电路之间的转换通过模数转换 (A/D) 或数模转换 (D/A) 来实现。但是,若不采取一定的措施,数字电路中的高频振荡信号就会对模拟电路带来一定的干扰,影响测量的精度。为了抑制数字电路对模拟电路带来的高频干扰,一般须将模拟地与数字地分开布线, 数模转换 (D/A) 电路的隔离与模数转换 (A/D) 电路的隔离类似,因而所采取的技术措施也差不多,是数模转换 (D/A) 电路的隔离方法之一。         4 结论         所谓电气隔离,就是将电源与用电回路作电气上的隔离,即将用电的分支电路与整个电气系统隔离,使之成为一个在电气上被隔离的、独立的不接地安全系统,以防止在裸露导体故障带电情况下发生间接触电危险。要实行电气隔离,必须满足以下条件:每一分支电路使用一台隔离变压,这种变压的耐压试验电压,比普通变压高,应符合Ⅱ级电工产品(双重绝缘或加强绝缘)的要求,也可使用与隔离变压的绝缘性能相等的绕制 . 所谓电气隔离,就是使两个电路之间没有电气上的直接联系。即,两个电路之间是相互绝缘的。同时还要保证两个电路维持能量传输的关系。         参考文献:         [1] 秦海鸿 , 杨正龙 . 隔离式低压 / 大电流输出 DC/DC 变换中几种副边整流电路的比较 [J]. 电源技术应用 , 2001(12):607-614.         [2] 范桢 , 蔡晓勇 . 推挽隔离式 BOOST 变换的分析与研究 [J]. 电力电子技术 , 2000, 34(2):23-25.         [3] 周嫄 . 10MHz 隔离型同步整流 Class Φ_2 DC-DC 变换 [D]. 南京航空航天大学 , 2016.

  • 标签:
  • 简介:摘要模块化多电平变换模块数量众多,模块电容电压难以高精度实时测量,本文提出一种电容电压的测量方法,应用该方法,在子模块中,通过AD把电压信号实时转换为数字信号,再把数字信号转换为固定频率的脉宽信号,该信号可以通过光纤或光耦传递给控制中心完成脉宽的测量,从而完成电容电压的模拟/数字/脉宽/数字(A/D/W/D)的变换。该方法转换精度高,实时性好。文中最后通过搭建的560V直流输入每桥臂两个模块的实验平台证实了所提方法的正确性。

  • 标签: