高压输电线路接地改造技术探讨

(整期优先)网络出版时间:2017-10-20
/ 2

高压输电线路接地改造技术探讨

林乐洋

(国网辽宁省电力有限公司大连供电公司辽宁116000)

摘要:高压输电线路在建设的过程中,一定要做好接地工作,而在接地工作开展的过程中,为了能够更好地适应高压输电线路工程的实际情况,有时候要对接地工作进行有效的改造,采取有效的改造技术就尤为重要。本文主要探讨了高压输电线路接地改造技术,探讨了改造过程中应该采取的技术方法,以及需要注意的一些要点,供参考和借鉴。

关键词:高压输电线路;接地;改造技术

前言

高压输电线路的安全平稳运行,有赖于全面可靠的接地系统,所以在对接地系统进行改造的过程中,改造的技术也非常关键,所以我们对改造的技术进行分析和判断,就是为了能够提高高压输电线路的运行质量。

1、输电线路雷电的原因及危害的种类

1.1输电线路雷电的产生

雷电是自然界中一种常见的放电现象。通常我们认为由于大气中热空气上升,与高空冷空气产生摩擦,从而形成了带有正负电荷的小水滴。当正负电荷累积达到一定的电荷值时,会在带有不同极性的云团之间以及云团对地之间形成强大的电场,从而产生云团对云团和云团对地的放电过程,这就是通常所说的闪电和响雷。

1.2输电线路雷电危害的种类

(1)直击雷。是指雷云对大地某点发生的强烈放电。它可以直接击中设备,雷电击中架空线,如电力线,电话线等。雷电流便沿着导线进入设备,从而造成损坏。

(2)感应雷。它可以分为静电感应及电磁感应。一旦雷云对某目标放电,雷云上的负电荷便瞬间消失,此时导线上的大量正电荷依然存在,并以雷电波的形式沿着导线经设备入地,引起设备损坏。

(3)地电位提高。当10kA的雷电流通过下导体入地时,我们假设接地电阻为10'Ω,根据欧姆定律,我们可知在入地点A处电压为100kV。

2、输电线路杆塔接地存在的问题分析

2.1接地网设计不合理

接地网设计不尽合理。我国20世纪七八十年代的接地系统设计及建设标准偏低,接地网大多利用扁钢作为接地体材料,不耐腐蚀,加上高土壤电阻率地区接地体面积过小,接地电阻过大,是造成高压输电线路投运后发生雷击事故的主要原因。

2.2施工不达工程要求

高压输电线路施工线长面广,各处土壤、地质环境又不相同,加上施工人员责任心不强,又缺乏必要的监督,造成接地体埋深不够,有的甚至部分裸露;回填土未达要求,填土后又未夯实;接地引下线与接地网及接地网与接地网之间焊接未达标等,使得接地电阻过大,腐蚀严重,有的甚至断开,不能很好泄流。

2.3接地网腐蚀严重

接地网发生腐蚀后,通常呈现局部腐蚀状态,接地网碳钢材料变脆、起层、松散,甚至会出现多处断裂,特别是埋设在酸碱性较强土壤中的接地体,腐蚀更是严重。在开挖检查中发现所有被锈蚀的接地网,其锈蚀最严重的部位是在接地引下线、垂直接地体入土处至水平接地体弯曲处,有的接地引下线竟被锈断。受腐蚀的接地网,其导电性能大大降低,接地电阻增大。

3、针对接地装置技术不足的改造方法

3.1关于接地装置的技术改进

3.1.1改善接地体的防腐性能。理论上讲接地装置的寿命与杆塔结构中的其他部件相同,但是接地装置的运行寿命与土壤的腐蚀性息息相关。因此,很有必要采取防腐措施来提高接地装置的耐腐蚀性。根据国内外相关学者的研究成果,考虑接地土壤酸碱环境,从以下两个方面来改善接地体的防腐性能:注重土壤腐蚀性与接地体面积之间的匹配关系。具体而言,在土壤腐蚀性较强的农田地带、化工厂附近、地势低洼等地区,有针对性地加大接地体的横截面积,降低接地装置的电阻率,提高导电泄流性能。

3.1.2科学选择接地装置型式。在实际工程应用中,杆塔接地装置大多采用多根水平放射线的形式。针对不同的工程实际,采取改变接地装置型式等优化措施,提高接地装置型式设计的合理性。在一些土壤电阻率相对较低的地区,如农田、低洼湿地等地,其接地装置的型式应该双轨方案,即采用水平接地体结合垂直接地体的方案,以保证其接触良好;反之,在土壤电阻率较高的地区,应该选择连续伸长接地体方案,即沿线路埋设2~3根接地线,一直延伸到下一基塔的接地装置,这种方式可以有效降低高土坡电阻率地区的杆塔电阻,提高接地体可靠性。

3.2加强架空高压输电线路接地的运行维护

接地装置的日常运行维护对于提高架空高压输电线路接地装置的运行可靠性,改善其现有的技术不足之处,具有重要意义。通过科学的运行维护可以及时消除接地装置存在的问题,发现潜在的故障风险,可以有效降低杆塔的接地电阻值,从而提升线路的耐雷水平。具体而言,接地装置的运行维护主要从装置部件及地下引线两方面着手。对接地杆塔的接地引下线进行定期巡视检查。通过工作人员的定期检查,可以及时发现接地体装置部件的故障隐患,排除连接螺栓松动的故障,及时更换生锈的螺栓,确保接地引下线的安全可靠。对接地体进行定期进行故障排查。该举措可以防止其受外力破坏而降低效能,在雨水较多的地区,应重点排查,防止接地体被冲刷出地面。此外,定期对接地体的锈蚀情况进行抽查,防止接地体因腐蚀而降低导电性能。

4、高压架空输电线路防雷击技术措施

4.1提升线路绝缘能力

可以采取在杆塔上方增加绝缘子串片数的方法,将导线和地线的距离拉大,达到提升绝缘能力的目的。这种方法通常在中性不接地、通过消弧线圈接地的绝缘系统之中。这一办法可以有效的减少雷击事故,提升输电线路的抗雷性能。

4.2使用不平衡绝缘手段

在目前所建的高压架空或超高压架空输电线路中,使用双回路线路的情况越来越多,对于这类同杆输电线路来说,普通的防雷技术措施已经无法满足其防雷需求,这种情况下完没可以使用不平衡绝缘手段,这种方法能够让双回路线路在遭受雷击后引起的跳闸现象明显减少,进而实现输电线路的稳定持续供电。该方法的使用原则是让双回路线路中的绝缘子串片数各不相同,这样一来在遭受雷击后,串片数较少的回路优先闪络,闪络之后导线可以看作地线,从侧面提高了另一回路导线的耦合作用,让另一回路的抗雷率得到明显提高,可以保证始终有一个回路在进行供电。

4.3使用耦合地埋线防雷

在高压架空输电线路的防雷工作中,耦合地埋线的作用主要有两个,第一是将接地电阻尽可能降低,在《电力工程高压送电线路设计手册》中提到,沿着输电线路在地中预埋2根左右的接地线称为连续伸长接地线,同时它能够和下一个基塔的接地装置连接在一起,从而能够使土壤电阻率较高的地区的接地电阻得到明显的降低;第二是它能够在一定程度上担负架空地线的角色,不仅能够起到分流作用,还能够发挥耦合作用。根据以往的调查分析,使用耦合地埋线之后,雷击跳闸事故的发生率能够减少40%左右。

结束语

综上所述,高压输电线路接地改造技术的应用,可以有效提升输电线路运行的效果,保证在运行的过程中降低问题的出现概率,提高运行的平稳性和安全性。

参考文献:

[1]党连有.高压输电线路施工技术管理[J].中国科技信息.2016(07):59

[2]赵春立;李永新.高压输电线路施工安全技术措施探讨[J].科技资讯.2016(06):47

[3]韩苏特.高压输电线路施工中的技术优化措施[J].科技创新与应用.2015(06):76