基于网络药理学研究保元汤治疗虚劳病的物质基础及作用机制

(整期优先)网络出版时间:2021-02-02
/ 11

基于网络药理学研究保元汤治疗虚劳病的物质基础及作用机制

吕经纬 1,张楠茜 1,边学锋 1,赵娜娜 2 通讯作者:张晓瑜 1*,孙佳明 *

1长春中医药大学吉林省人参科学研究院, 2. 长春中医药大学研究生院 长春 130117

摘要:目的 研究保元汤治疗虚劳病的物质基础及作用机制。方法 基于TcmSP数据库建立保元汤化学成分库并按照利宾斯基五法则(ADME)筛选保元汤的有效成分;通过SwissTargetPrediction、TTD、CTD数据库预测有效成分与虚劳病相关的靶点,并导入Metascape数据库以阐明保元汤的作用机制;根据贡献指数分析确定保元汤治疗虚劳病的物质基础。结果 保元汤45个具有良好药代动力学特征和生物活性的有效成分与虚劳病67个靶点协同发挥治疗作用;根据贡献指数分析,Panaxadiol、Tyranton、Kaempferol、quercetin、Calycosin、D-Camphor、formononetin 7个有效成分为保元汤治疗虚劳病的物质基础;对构建的网络分析发现,ABCG2、MTOR、NOS2、CYP2C19和VDR 等靶点主要参与化学致癌作用信号通路、细胞色素P450对外源性化学物质代谢信号通路、HIF-1信号通路和花生四烯酸代谢信号通路。结论 Panaxadiol、Tyranton、Kaempferol、quercetin、Calycosin、D-Camphor、formononetin 7个有效成分作为保元汤的物质基础通过调节ABCG2、MTOR、NOS2、CYP2C19和VDR等靶点以及化学致癌作用、类固醇激素生物合成、HIF-1和花生四烯酸代谢信号通路发挥治疗虚劳病的作用。

关键词:保元汤 虚劳病 贡献指数 网络药理学

中图分类号:R285.5 文献标志码:A


Effective components and mechanisms of Baoyuan Decoction in the treatment of consumptive diseases of based on network pharmacology

Lv Jingwei1,Zhang Nanxi1,Bian Xuefeng1,Zhao Nana2,Zhang Xiaoyu1*,Sun Jiaming1 *

(1. Jilin Ginseng AcademyChangchun University of Traditional Chinese Medicine2. Graduate schoolChangchun University of Traditional Chinese MedicineChangchun 130117China)


Abstract: Objective To study the material basis and mechanism of Baoyuan Decoction in the treatment of vagus disease. Methods Based on the TcmSP database, the chemical constituents of Baoyuan Decoction were prepared and the active constituents of Baoyuan Decoction were screened according to limerick Five Principles(ADME). The target of functional ingredients and vantage disease was predicted by SwissTargetPrediction, TTD and CTD databases. The Metascape database was put in place to clarify the mechanism of action of Baoyuan Decoction. The material basis of Baoyuan Decoction in treating the disease was identified according to the contribution index analysis. Results 45 Baoyuan Decoction active ingredients with good pharmacokinetics characteristics and biological activity sympathetically exerted therapeutic effects of 67 targets of vanilla disease. According to the contribution index analysis, Panaxadiol, Tyranton, Kaempferol, quercetin, Calycosin, D-Camphor the Fortonetintin 7 active ingredients are the factual basis of Baoyuan Decoction for the treatment of vaginal diseases. Network analysis of the construction found that ABCG2, MTOR, NOS2, CYP2C19 and VDR are mainly involved in chemical carcinogenesis signaling pathway and cytochrome P450. Sexual chemical metabolism is signaling pathway, HIF-1 signaling pathway and anachronic acid metabolic signaling pathway.

Conclusions Are 7 active components of Panaxadiol, Tyranton, Kaempferol, quercetin, Calycosin, D-Camphor and Fordononetin. As the material basis of Baoyuan Decoction by regulating the targets of ABCG2, MTOR, NOS2, CYP2C19 and VDR, as well as chemical carcinogenesis and steroid hormone biosynthesis the HIF-1 and anachronic acid metabolic signaling pathways play a role in the treatment of vagus disease.

Key words: Baoyuan Decoction, consumptive diseases, contribution index, Network Pharmacology


保元汤出自明·《博爱心鉴》,由人参、黄芪、甘草、肉桂4味草药组成,主治虚损劳怯,元气不足,现代医学多用于虚劳病的治疗。《金匮要略》所述“五劳七伤”是虚劳病的主要病因,现代医学表明,虚劳病通常包括泌尿生殖系统疾病和血液系统疾病,如慢性肾病、肾炎,贫血、少精症,以及浮肿,蛋白尿等临床表现。虽然保元汤治疗虚劳病有很好的效果,但其作用机制仍不清楚。

网络药理学是研究中医药整体作用的有效工具,结合药理学、药效学等技术已成功应用在分子网络层面来解释一些中草药的机制。在本研究中,通过化学、药代动力学和药理学数据的网络药理学模型以及贡献指数分析,研究了保元汤治疗虚劳病的物质基础和作用机制。


1 方法

1.1 化学成分数据库

保元汤由人参、黄芪、甘草、肉桂4味草药组成,通过草药系统药理学数据库和分析平台(TcmSP™,http://sm.nwsuaf.edu.cn/lsp/tcmsp.php)获得相应化学成分。同时,还从TcmSP数据库获得了7种重要的药理学相关性数据,包括分子量(MW),脂水分配系数(AlogP),氢键供体数(Hdon),氢键受体数(Hacc),生物利用度(OB),药物细胞穿透性(Caco-2),类药性(DL)。

1.2 有效成分筛选

通过整合包括OB,Caco-2和DL在内的3个指标对来自人参、黄芪、甘草和肉桂的有效成分进行筛选。同时满足OB≥50%,Caco-2>-0.4,DL≥0.18这3个标准的有效成分进行下一步分析。同时,通过Google Scholar的大规模文本挖掘,含量高或活性强的化合物也归入有效成分库中。

1.3 靶点预测

首先,将有效成分导入SwissTargetPrediction数据库(http://www.swisstargetprediction.ch),通过2D和3D结构相似性预测有效成分的靶点。其次,将虚劳病导入TTD(https://db.idrblab.org/ttd/)和DrugBank(https://www.drugbank.ca)数据库搜索疾病靶点。然后,为更好地剖析保元汤在虚劳病治疗中的作用,从以上两个步骤获得的各项指标均发送到TTD和比较毒理基因组学数据库CTD(http://ctdbase.org/)收集用于治疗与靶点有关的疾病。最后,保留与虚劳病的病理生理学和临床表现有关的靶点,删除其他靶点。

1.4 网络构建

构建三个网络:(1)成分-靶点网络(CT网络),采用保元汤的有效成分及其相应的靶点构建CT网络;(2)靶点-疾病网络(TD网络),所有靶点及其相应的疾病构建TD网络;(3)靶点-通路网络(TP网络),从Metascape数据库(http://metascape.org/gp/index.html#/main/step1)中提取靶点的KEGG通路信息,建立由靶点及其相应的通路组成的TP网络。所有可视化网络图由Cytoscape 3.7.1(http://www.cytoscape.org/)构建。

1.5 贡献指数计算

为了预测保元汤中每种有效成分治疗虚劳病的贡献值,提出了基于成分网络效能(NE)的文献加权贡献指数(CI),并通过方程式(1)和(2)计算:


6019109aad4bb_html_83312a0bbb6d83ca.gif

(1)


6019109aad4bb_html_22672bd157e8d143.gif

(2)

注:其中n是与成分j相关的目标数;di是与成分j相关目标i的度值;ci是成分i与虚劳病相关文献的数量;m是成分的数量。如果前N个成分的CI总和超过85%,则认为这些相关的N成分对虚劳病作用贡献最大。


2 结果

通过网络构建方法,基于化学、药代动力学和药理学数据的网络药理学研究保元汤治疗虚劳病的分子机制(图1)。首先,构建化合物库,研究保元汤的所有成分;其次,收集并计算成分的口服生物利用度(OB)、细胞渗透性(Caco-2)和类药性(DL)以筛选潜在的有效化合物;然后从文献和公共数据库/软件来源数据挖掘出有效化合物的潜在靶标及其相应的疾病和通路;随后,将获得的药理学数据分别整合到成分-靶点(CT),靶点-疾病(TD)和靶点–通路(TP)网络中;最后,基于网络效能的文献加权计算每种有效成分的贡献指数。通过以上分析,探讨保元汤治疗虚劳病的物质基础和作用机制。

6019109aad4bb_html_6b5e87cbcc2ee6e8.jpg

图1. 基于网络药理学的整体框架

2.1 保元汤的成分分析

保元汤的成分来自TcmSP数据库,其中人参(190个)的主要成分是皂苷类,黄芪(87个)的主要成分是黄酮类[1],甘草(280个)的主要成分是三萜皂苷类[2],肉桂(100个)的主要成分是肉桂油类[3],因此,共有657个成分收集到化学成分库(补充表S1)。为了研究保元汤成分的分子多样性,基于7个重要性质进行Duncan多重比较检验[4],包括分子量(MW)、脂水分配系数(AlogP)、氢键供体数(Hdon)、氢键受体数(Hacc)、生物利用度(OB)、药物细胞穿透性(Caco-2)和类药性(DL)(图2)。(1)从MW中观察到肉桂(180.51)与人参(423.58)、黄芪(418.03)和甘草(354.47)的MW相比显著不同(p0.05);(2)黄芪(1.47)与人参(3.59)、甘草(3.58)和肉桂(3.72)的ALogP值相比显著不同(p0.05),表明黄芪的水溶助长性更强;(3)肉桂的平均nHDon数(0.24)显著低于人参(3.50)、黄芪(4.16)和甘草(2.75)(P0.05);(4)肉桂的平均nHAcc数(0.79)也显著低于人参(5.93)、黄芪(7.72)和甘草(5.28)(P0.05);(5)人参(26.46%)、黄芪(32.32%)、甘草(31.95%)和肉桂(32.87%)的平均OB值相比无明显差异(p>0.05),表明四味草药均具有较好的生物利用度;(6)对于药物细胞穿透性,人参的平均Caco-2值(0.08)、甘草(0.43)和肉桂(1.53)显著高于黄芪(-0.46)(P0.05),表明前三者具有更好的药物细胞穿透性。(7)对于DL分析,肉桂表现出较低的平均DL指数(0.06),与人参(0.29)、黄芪(0.31)和甘草(0.39)相比显着不同(P0.05)。

6019109aad4bb_html_8fc0b95d1e51b8b0.jpg

图2. 保元汤的成分分析

注:数据用平均值±标准差(范围)表示,不同的上标(a,b,c,d)表示差异显著(Duncan检验,P<0.05


上述分析表明,人参、黄芪、甘草和肉桂的成分多种多样,但大部分都符合利宾斯基的五法则,除了生物利用度性质外,四味草药化学成分的其他性质明显不同,甘草、肉桂的成分具有更好的药代动力学特性(OB和Caco-2),黄芪的成分具有更好的水溶性,而来自人参、黄芪和甘草的成分具有更好的类药性(DL),这也说明保元汤为什么能产生协同和互补作用。

2.2 保元汤的有效成分

虽然单味草药或复方通常含有相当多的生物活性成分,但可能只有少数具有理想的药效学和药代动力学特性,因此,选择三个关键的ADME(吸收,分布,代谢和排泄)参数,包括OB≥50%,Caco-2>-0.4和DL≥0.18用来筛选保元汤的有效成分。另外,通过文献挖掘手动补充了一些不满足这三个标准但具有高含量和高生物活性的化合物。最终,从保元汤的657种化合物中选出了药代动力学特征令人满意的45种有效成分(表1),例如:kaempferol(RS-2,OB=41.88%,Caco-2=0.26和DL=0.24)具有抗炎、抗肿瘤作用[5,6];FrutinoneA(RS-6,OB=65.9%,Caco-2=0.89和DL=0.34)表现出有效的抗细菌和真菌的特性[7];Isorhamnetin(HQ-2,OB=49.6%,Caco-2=0.31和DL=0.31)具有抗炎、抗氧化,保护肾脏功能的作用[8];Formononetin(HQ-6,OB=69.67%,Caco-2=0.78和DL=0.21)具有保护肾脏,预防急性肾损伤的作用[9];Pinocembrin(GC-3,OB=64.72%,Caco-2=0.61和DL=0.18)具有抗氧化,抗菌和抗炎,保护神经元的作用[10]。同时,应该注意的是肉桂的有效成分显示出低DL值,但它们却表现出强效的药理作用,例如,Methylbenzofuran(RG-7,OB=54.35%,Caco-2=1.74和DL=0.03)具有显着的抗微生物活性[11]

;3-methoxycinnamaldehyde(RG-8,OB=54.65%,Caco-2=1.1和DL=0.04)具有调控T细胞,增强免疫力的作用[12]。基于上述考虑,这45种化合物可被列为保元汤的有效成分。


表1. 保元汤45个有效成分和ADME参数

代码

名称

结构体

OB (%)

Caco-2

DL

中药

RS-1

Inermin

6019109aad4bb_html_3df22ce989206953.png

65.83

0.91

0.54

Panax Ginseng

RS-2

kaempferol

6019109aad4bb_html_7e524271eab7f3f3.png

41.88

0.26

0.24

Panax Ginseng

RS-3

Celabenzine

6019109aad4bb_html_d17350c39147a557.png

101.88

0.77

0.49

Panax Ginseng

RS-4

Deoxyharringtonine

6019109aad4bb_html_1fc2f4f2d3268f1c.png

39.27

0.19

0.81

Panax Ginseng

RS-5

Dianthramine

6019109aad4bb_html_bf32365f844ed728.png

40.45

-0.23

0.2

Panax Ginseng

RS-6

Frutinone A

图片 8

65.9

0.89

0.34

Panax Ginseng

RS-7

Girinimbin

6019109aad4bb_html_440e632d5aa377d4.png

61.22

1.72

0.31

Panax Ginseng

RS-8

Gomisin B

6019109aad4bb_html_4a935ebeb11e2553.png

31.99

0.6

0.83

Panax Ginseng

RS-9

suchilactone

6019109aad4bb_html_5751a8b13a4171e1.png

57.52

0.82

0.56

Panax Ginseng

RS-10

Fumarine

6019109aad4bb_html_7f80d5f7dc4cbfec.png

59.26

0.56

0.83

Panax Ginseng

RS-11

panaxadiol

6019109aad4bb_html_9892ea9be4943e4d.png

33.09

0.82

0.79

Panax Ginseng

RS-12

panaxatriol

6019109aad4bb_html_a9e9edd344625aaf.png

15.42

0.52

0.79

Panax Ginseng

HQ-1

Jaranol

6019109aad4bb_html_ca99905b8039b9a8.png

50.83

0.61

0.29

ysarum Multijugum Maxim.

HQ-2

isorhamnetin

6019109aad4bb_html_dc6c75a67e605592.png

49.6

0.31

0.31

ysarum Multijugum Maxim.

HQ-3

3,9-di-O-methylnissolin

6019109aad4bb_html_4f9a47d03f6bf44f.png

53.74

1.18

0.48

ysarum Multijugum Maxim.

HQ-4

(6aR,11aR)-9,10-dimethoxy-6a,11a-dihydro-6H-benzofurano[3,2-c]chromen-3-ol

6019109aad4bb_html_f3615cd4078f5e64.png

64.26

0.93

0.42

ysarum Multijugum Maxim.

HQ-5

Bifendate

6019109aad4bb_html_14a2ea951b695e72.png

31.1

0.15

0.67

ysarum Multijugum Maxim.

HQ-6

formononetin

6019109aad4bb_html_de53a90c9bf07c15.png

69.67

0.78

0.21

ysarum Multijugum Maxim.

HQ-7

isoflavanone

6019109aad4bb_html_1d307c573aad216d.png

109.99

0.53

0.3

ysarum Multijugum Maxim.

HQ-8

Calycosin

6019109aad4bb_html_dd0c73f2ca057c21.png

47.75

0.52

0.24

ysarum Multijugum Maxim.

HQ-9

kaempferol

6019109aad4bb_html_7e524271eab7f3f3.png

41.88

0.26

0.24

ysarum Multijugum Maxim.

HQ-10

1,7-Dihydroxy-3,9-dimethoxy pterocarpene

6019109aad4bb_html_7c3ed4de9d7276b4.png

39.05

0.89

0.48

ysarum Multijugum Maxim.

HQ-11

quercetin

6019109aad4bb_html_2a3d6268982baa8e.png

46.43

0.05

0.28

ysarum Multijugum Maxim.

GC-1

Inermine

6019109aad4bb_html_d613869f60523f86.png

75.18

0.89

0.54

licorice

GC-2

Jaranol

6019109aad4bb_html_ca99905b8039b9a8.png

50.83

0.61

0.29

licorice

GC-3

Pinocembrin

6019109aad4bb_html_f8ac3864398d4842.png

64.72

0.61

0.18

licorice

GC-4

formononetin

6019109aad4bb_html_de53a90c9bf07c15.png

69.67

0.78

0.21

licorice

GC-5

glyasperin F

6019109aad4bb_html_1676dd32a0832d18.png

75.84

0.43

0.54

licorice

GC-6

Glypallichalcone

图片 29

61.6

0.76

0.19

licorice

GC-7

licoisoflavanone

6019109aad4bb_html_69e6f80fa1464203.png

52.47

0.39

0.54

licorice

GC-8

shinpterocarpin

6019109aad4bb_html_d5578d39f9f51391.png

80.3

1.1

0.73

licorice

GC-9

Glyzaglabrin

6019109aad4bb_html_cb9438a0fb52ba8e.png

61.07

0.34

0.35

licorice

GC-10

Glabrone

6019109aad4bb_html_5585e127474b43c7.png

52.51

0.59

0.5

licorice

GC-11

(2R)-7-hydroxy-2-(4-hydroxyphenyl)chroman-4-one

6019109aad4bb_html_d6322227917f968f.png

71.12

0.41

0.18

licorice

GC-12

Licoagroisoflavone

6019109aad4bb_html_74db5d32a862348.png

57.28

0.71

0.49

licorice

RG-1

CAM

6019109aad4bb_html_ab683bd3da7f9675.png

67.17

1.29

0.05

Cinnanmomi Cortex

RG-2

α-cubebol

6019109aad4bb_html_fdbd513c32c61373.png

64.81

1.32

0.09

Cinnanmomi Cortex

RG-3

ZINC01850974

6019109aad4bb_html_b9641f2b5b835d9a.png

78.86

1.31

0.05

Cinnanmomi Cortex

RG-4

l-alpha-Fenchone

6019109aad4bb_html_9af9863d745c4187.png

72.64

1.35

0.05

Cinnanmomi Cortex

RG-5

[(1S)-endo]-(-)-Borneol

6019109aad4bb_html_7a44ee23f6005b7.png

83.54

1.22

0.05

Cinnanmomi Cortex

RG-6

Tyranton

6019109aad4bb_html_ddb7e3daeecfe392.png

58.34

0.49

0.01

Cinnanmomi Cortex

RG-7

METHYLBENZOFURAN

6019109aad4bb_html_c45d774ab8b575e4.png

54.35

1.74

0.03

Cinnanmomi Cortex

RG-8

3-methoxycinnamaldehyde

图片 43

54.65

1.1

0.04

Cinnanmomi Cortex

RG-9

()-Terpinen-4-ol

图片 44

81.41

1.36

0.03

Cinnanmomi Cortex

RG-10

hexanal

6019109aad4bb_html_85d6e48080248ba3.png

55.71

1.25

0.01

Cinnanmomi Cortex


2.3 保元汤的靶点

仅通过实验方法去筛选新药物是耗时耗力的,本实验采用一种综合的计算机模拟方法来筛选保元汤有效成分的目标靶点,使用SwissTargetPrediction数据库(http://www.swisstargetprediction.ch),CTD数据库(http://ctdbase.org/),TTD数据库(http://bidd.nus.edu.sg/group/ttd/)和DrugBank数据库(http://www.drugbank.ca/)筛选出保元汤45个有效成分与虚劳病相互作用的67个靶点(表2),其中,人参12个有效成分筛选出41个虚劳病相关靶点,黄芪11个有效成分筛选出36个虚劳病相关靶点,甘草12个有效成分筛选出42个虚劳病相关靶点,肉桂10个有效成分筛选出36个虚劳病相关靶点。例如,ITGA2B、CYP2C19、CYP24A1、IMPDH1、PTGS1和PTGS2,这些靶点大多数涉及泌尿生殖系统和血液系统疾病。ITGA2B对出血、癌症、炎症、心血管疾病和许多关键的生物过程有广泛的影响[13];CYP2C19是慢性肾病有机阴离子转运消除的重要途径[14];CYP24A1是高质量精子的重要指标[15];IMPDH1可调节细胞内脂肪积累和前脂肪细胞成熟,减少营养不良性肾病的发病率[16];PTGS1和PTGS2对炎症反应具有保护作用[17]。此外,Kaempferol(RS-2)可以对海马CA1区锥体神经元起到保护作用[18]Isoflavanone(HQ-7)可介导HSD17B2发挥抗肿瘤作用[19];Calycosin(HQ-8)和Formononetin(GC-4)可激活CA2受体诱导内皮依赖性血管扩张,产生对认知障碍的有益作用[20];Quercetin(HQ-11)可有效的预防并治疗贫血[21];D-Camphor(RG-1)具有广泛亲脂性,是安全有效的细胞渗透增强剂[22],并且有明确的抗肿瘤活性[23],以上结果表明保元汤具有治疗泌尿生殖系统和血液系统疾病的作用。


表2. 保元汤与虚劳病相关的67个靶点

代码

蛋白名称

基因名称

Uniprot ID

相关疾病

T-01

P-glycoprotein 1

ABCB1

P08183

Adrenocortical carcinoma,Acute myeloid leukemia,Edema

T-02

ATP-binding cassette sub-family G member 2

ABCG2

Q9UNQ0

Inflammatory bowel dieasea,Rheumatoid arthritis,Edema

T-03

Histone deacetylase 8

HDAC8

Q9BY41

Cancer,Edema

T-04

Serine/threonine-protein kinase mTOR

MTOR

P42345

Advanced kidney cancer,Advanced solid tumor;Non-hodgkin's lymphoma,Bladder cancer,Proteinuria

T-05

Multidrug resistance-associated protein 1

ABCC1

P33527

Arthritis,Edema

T-06

Estradiol 17-beta-dehydrogenase 2

HSD17B2

P37059

Inflammation,Kidney Diseases,Precancerous Conditions,Neoplasms,Edema,Oligospermia

T-07

Tyrosinase

TYR

P14679

Edema,Rheumatoid arthritis

T-08

Cytochrome P450 2C19

CYP2C19

P33261

Cardiovascular Diseases,Kidney Failure

T-09

Cytochrome P450 2C9

CYP2C9

P11712

Bacterial infections,Nephritis,Interstitial

T-10

Cyclooxygenase-2

PTGS2

P35354

Arthritis,Edema

T-11

Serotonin 1a (5-HT1a) receptor

HTR1A

P08908

Female sexual dysfunction,Hypoactive sexual desire disorder

T-12

Serotonin 2a (5-HT2a) receptor

HTR2A

P28223

Central nervous system disease,Female sexual dysfunction

T-13

Dopamine D4 receptor

DRD4

P21917

Erectile dysfunction,Sexual dysfunction

T-14

Beta amyloid A4 protein

APP

P05067

Cancer,Infertility

T-15

Carbonic anhydrase II

CA2

P00918

Cancer,Edema associated with congestive heart failure

T-16

Carbonic anhydrase I

CA1

P00915

Edema,Cancer

T-17

11-beta-hydroxysteroid dehydrogenase 1

HSD11B1

P28845

Atherosclerosis,Kidney Diseases

T-18

Quinone reductase 2

NQO2

P16083

Breast cancer,Cancer,Edema

T-19

Xanthine dehydrogenase

XDH

P47989

Cancer,Proteinuria

T-20

Myeloperoxidase

MPO

P05164

Inflammatory disease,Kidney Diseases

T-21

Carbonic anhydrase IV

CA4

P22748

Breast cancer,Infertility

T-22

Aldose reductase   (by homology)

AKR1B1

P15121

Rheumatoid arthritis,Oligospermia

T-23

Aldo-keto reductase family 1 member C4 (by homology)

AKR1C4

P17516

Heart Diseases,Inflammation,Edema

T-24

Aldo-keto-reductase family 1 member C3 (by homology)

AKR1C3

P42330

Prostate cancer,Disorders of Sex Development

T-25

Aldo-keto reductase family 1 member C1 (by homology)

AKR1C1

Q04828

Inflammation,Kidney Diseases,Edema

T-26

Aldo-keto reductase family 1 member C2 (by homology)

AKR1C2

P52895

Inflammation,Kidney Diseases,Anemia,Oligospermia

T-27

Aldehyde reductase (by homology)

AKR1A1

P14550

Kidney Diseases,Inflammation

T-28

Liver glycogen phosphorylase

PYGL

P06737

Inflammation,Kidney Diseases,Renal Insufficiency

T-29

Complement factor D

CFD

P00746

Glomerulonephritis,Inflammation,Kidney Diseases

T-30

Calcium sensing receptor

CASR

P41180

Kidney disease,Cerebrovascular ischaemia,Myelodysplastic syndrome,Osteoporosis

T-31

Nitric oxide synthase, inducible (by homology)

NOS2

P35228

Cancer,Inflammatory disease,Osteoarthritis

T-32

Inosine-5'-monophosphate dehydrogenase 2

IMPDH2

P12268

Kidney Diseases,Edema,Oligospermia,Anemia

T-33

Thiopurine S-methyltransferase

TPMT

P51580

Leukopenia,Neutropenia,Kidney Diseases

T-34

Cyclooxygenase-1

PTGS1

P23219

Cancer

T-35

Muscle glycogen phosphorylase

PYGM

P11217

Kidney Diseases,Testicular Diseases,Oligospermia

T-36

Cytochrome P450 1A2

CYP1A2

P05177

Inflammation,Kidney Diseases,Neoplasms

T-37

11-beta-hydroxysteroid dehydrogenase 2

HSD11B2

P80365

Nephrotic Syndrome,Edema,Oligospermia

T-38

Cyclophilin A

PPIA

P62937

Edema,Oligospermia,Renal Insufficiency

T-39

Mineralocorticoid receptor

NR3C2

P08235

Chronic kidney disease,Diabetic nephropathy

T-40

DNA topoisomerase II alpha

TOP2A

P11388

Solid tumours,Edema

T-41

Ornithine decarboxylase

ODC1

P11926

Anemia

T-42

Hypoxanthine-guanine phosphoribosyltransferase

HPRT1

P00492

Neoplasms,Proteinuria

T-43

Branched-chain-amino-acid aminotransferase, mitochondrial

BCAT2

O15382

Kidney Diseases,Oligospermia,Renal Insufficiency

T-44

Thromboxane-A synthase

TBXAS1

P24557

Nephritis

T-45

Flap endonuclease 1

FEN1

P39748

Inflammation,Neoplasms,Kidney Diseases,Anemia

T-46

Dihydroorotate dehydrogenase

DHODH

Q02127

Leukemia,Erythroblastic,Acute,Anemia,Sickle Cell,beta-Thalassemia

T-47

Aldehyde dehydrogenase

ALDH2

P05091

Infertility

T-48

Cytochrome P450 1A1

CYP1A1

P04798

Infertility,Male,Kidney Neoplasms,Prostatic Neoplasms

T-49

DNA polymerase beta (by homology)

POLB

P06746

Urinary Bladder Neoplasms,Leukemia, Lymphocytic,Chronic,B-Cell,Kidney Diseases

T-50

Retinoid X receptor alpha

RXRA

P19793

Proteinuria

T-51

Cytochrome P450 24A1 (by homology)

CYP24A1

Q07973

Renal Insufficiency,Edema,Oligospermia

T-52

Inosine-5'-monophosphate dehydrogenase 1

IMPDH1

P20839

Edema,Proteinuria,Anemia,Aplastic

T-53

Signal transducer and activator of transcription 3

STAT3

P40763

Hepatocellular carcinoma,Multiple myeloma,Solid tumours

T-54

Vitamin D receptor

VDR

P11473

Acute myeloid leukemia,Cancer ,Chronic kidney disease;Kidney transplantation

T-55

Alcohol dehydrogenase alpha chain

ADH1A

P07327

Anemia,Inflammation,Proteinuria

T-56

Alcohol dehydrogenase class II

ADH4

P08319

Kidney Diseases,Inflammation,Oligospermia

T-57

Alcohol dehydrogenase gamma chain

ADH1C

P00326

Inflammation,Kidney Diseases,Anemia

T-58

Alcohol dehydrogenase beta chain

ADH1B

P00325

Nervous System Diseases,Inflammation,Oligospermia

T-59

Cytochrome P450 3A4

CYP3A4

P08684

Cancer

T-60

Solute carrier family 22 member 6 (by homology)

SLC22A6

Q4U2R8

Kidney Diseases,Proteinuria,Edema,Anemia

T-61

Cytochrome P450 2A6

CYP2A6

P11509

Inflammation,Kidney Diseases,Oligospermia

T-62

Aldehyde dehydrogenase 1A1

ALDH1A1

P00352

Inflammation,Kidney Diseases

T-63

Glutathione reductase

GSR

P00390

Inflammatory bowel disease,Vascular disease

T-64

Heme oxygenase 1 (by homology)

HMOX1

P09601

Inflammation,Coronary Artery Disease,Hepatorenal Syndrome

T-65

Anti-estrogen binding site (AEBS) (by homology)

DHCR7

Q9UBM7

Bone Diseases, Metabolic,Inflammation,Kidney Diseases,Oligospermia

T-66

Cytochrome P450 17A1

CYP17A1

P05093

Metastatic castration-resistant prostate cancer,Prostate cancer,Infertility,Sexual Dysfunctions,Psychological

T-67

Egl nine homolog 1

EGLN1

Q9GZT9

Cancer,Inflammation


2.4 成分-靶点网络和贡献指数分析

为了便于可视化和解释保元汤有效成分与靶点之间的复杂关系,构建了成分-靶点网络(CT网络,图3),由此得到保元汤的两个特征:(1)多药共靶,(2)一药多靶。CT网络高度互联源于各节点的高degree值,每个有效成分对应靶点的平均degree值为11.8,特别是Fumarine(RG-10,degree=22),Jaranol(GC-2,degree=21),Kaempferol(RS-2,degree=20),Isorhamnetin(HQ-2,degree=20)和Quercetin(HQ-11,degree=20)。从该网络的拓扑特征和靶点的功能特性来看,保元汤的有效成分和靶点之间存在不同的作用模式,其靶点发挥潜在的多激酶抑制剂或激活剂的作用。如CT网络所示,保元汤的功效不仅集中在调节泌尿生殖系统和血液系统疾病(ABCG2,MTOR,NOS2和VDR)的相关靶点,还集中调节介导炎症等其他靶点(ABCB1,CYP2C19,PTGS2,HDAC8和IMPDH2),以缓解病理变化,延长有效的治疗过程。例如,ABCG2蛋白能保护我们的细胞和组织免受各种外源性化学物质的侵害,具有抗缺氧,调节药物的吸收和分布,在肠道、肾脏和血脑屏障中起着至关重要的作用[24],ABCG2与23个有效成分有相互作用,而Isorhamnetin、Kaempferol、Quercetin协同增加ABCG2表达[25]。此外,神经毒性促炎介质PTGS2也与17个有效成分相关,而Kaempferol等成分被证实具有提高PTGS2的表达水平发挥抗炎作用[26]

6019109aad4bb_html_1c27be05efa817ce.png

图3. 保元汤的成分-靶点网络

注:45个有效成分(矩形)和67个靶点(圆形)。12个红色矩形、11个黄色矩形、12个绿色矩形和10个紫色矩形分别代表人参、黄芪、甘草和肉桂的有效成分;中间42个蓝色圆形代表四味草药的共同靶点,上方5个红色圆形,左边2个黄色圆形,右边4个绿色圆形和下方14个紫色圆形分别代表人参、黄芪、甘草和肉桂的独有靶点。


靶点-疾病网络(TD网络,图4)是基于所有靶点及其相应疾病进一步构建的,保元汤可以调节泌尿生殖系统和血液系统疾病以及炎症相关的靶点。Panaxadiol(RS-11)介导NOS2、PTGS2、STAT3等靶点抑制炎症和氧化应激反应,防止急性肾损伤[27,28];Quercetin(HQ-11)调控ABCG2、ABCB1靶点激活自噬作用,阻止NLRP3炎性体激活从而改善肾近曲小管功能[29];Formononetin(GC-4)调节FEN1、XDH靶点,具有良好抗真菌活性及抗纤维化作用[30]。另外,在TD网络中也发现了与癌症相关的靶点,D-Camphor(RG-1)能够通过抑制VDR、CYP3A4、CYP17A1、EGLN1的蛋白质表达来拮抗肿瘤生成[31,32]。如上所述,基于文献加权的网络功效提出了每个有效成分的贡献指数,根据计算结果(图5)所示,保元汤中Panaxadiol(RS-11)、Tyranton(RG-6)、Kaempferol(RS-2/HQ-9)、Quercetin(HQ-11)、Calycosin(HQ-8)、D-Camphor(RG-1)和Formononetin(GC-4/HQ-6)7个有效成分对治疗虚劳病的贡献最大,CI值为88.63%,因此,以上7个有效成分是保元汤的物质基础。

6019109aad4bb_html_394d168677340959.png

图4. 保元汤的靶点-疾病网络

注:5个红色圆形、2个黄色圆形、4个绿色圆形和14个紫色圆形分别代表人参、黄芪、甘草和肉桂的独有靶点,42个蓝色圆形代表四味草药的共同靶点;7颗黄色菱形代表与67个靶点相关的系统疾病。


6019109aad4bb_html_aa993a95048c885a.jpg

图5. 保元汤中有效成分的CI和累积CI


2.5 保元汤作用机制的通路分析

信号通路是网络药理学的重要组成部分,是受体-配体相互作用与药效学的有机结合[33]。从Metascape数据库中提取与治疗和预防虚劳病相关的29条KEGG信号通路(图6),包括化学致癌作用信号通路、视黄醇代谢信号通路、药物代谢-细胞色素P450信号通路和酪氨酸代谢信号通路等。药物代谢-细胞色素P450信号通路对药物代谢引起的慢性肾功能衰竭至关重要[34],研究表明,Kaempferol、Quercetin通过药物代谢-细胞色素P450信号通路的多个靶点发挥保护肾脏功能的作用[35];酪氨酸代谢信号通路被证明在急性肾损伤、急性肾小管坏死,急性肾炎和肾病综合征的病理生理学中起关键作用[36]

6019109aad4bb_html_c9daf667e6050997.jpg

图6. (前13条)KEGG信号通路


为了系统地剖析保元汤的作用机制,将有效成分相互作用的所有靶点映射到29条KEGG通路上构建靶点-通路网络(TP网络,图7),其中化学致癌作用信号通路靶点链接数最高(degree=18),其次是类固醇激素生物合成信号通路(degree=12)、细胞色素P450对外源性化学物质代谢信号通路(degree=11)、HIF-1信号通路(degree=11)和花生四烯酸代谢信号通路(degree=11),这些度值高的信号通路与泌尿生殖系统疾病和炎症密切相关

[37-39]。花生四烯酸代谢是保护泌尿生殖系统和免疫系统重要的信号通路[40,41],保元汤中Panaxadiol、Tyranton、Kaempferol和Quercetin等41个有效成分参与调节CYP2A6、HPRT1、IMPDH1、TPMT、XDH和HPRT1等靶点作用于此通路。6019109aad4bb_html_9190bbcdbbe38e08.png

图7. 保元汤的靶点-通路网络

注:蓝色节点代表靶点,紫色节点代表通路


总体而言,可以推测保元汤主要通过调节化学致癌作用、类固醇激素生物合成、花生四烯酸代谢和HIF-1信号通路发挥治疗泌尿生殖系统和血液系统疾病的作用。作为一种整体医学,保元汤也可能与视黄醇代谢、药物代谢-细胞色素P450、癌症的途径、5-羟色胺能突触、糖酵解/糖异生和酪氨酸代谢通路有关,调节血管和神经系统、炎症和其他疾病。

3 讨论

保元汤作为经典名方经常被用于中医处方,通过数据挖掘和药理学研究发现保元汤通过协同、互补效应来治疗虚劳病,但其物质基础及作用机制尚不清楚。目前,网络药理学为中医药机理探索提供了强大有效的帮助[42]。本研究中,基于网络药理学方法筛选有效成分,预测靶点,构建网络,并阐明保元汤在治疗虚劳病上的分子协同作用。通过ADME法则从保元汤的657个化合物中筛选出45个具有良好生物活性的有效成分,为保元汤的深入研究提供了物质基础。结果发现,对这些有效成分治疗虚劳病的生物活性已有报道[25-32],表明ADME筛选标准的可信度。然后,通过在线数据库筛选45个有效成分与虚劳病相关的67个靶点,包括42个共同靶点,表明有效成分发挥其协同和互补疗效的作用模式和生物过程。随后,检索了29条保元汤与虚劳病相关的信号通路。最后,CT、TD和TP网络清楚地阐明了保元汤在整体背景下的分子协同作用。通过网络分析和贡献指数计算,人参中的Panaxadiol和Kaempferol,黄芪中的Quercetin和Calycosin,甘草中的Kaempferol以及肉桂中的Tyranton 和D-Camphor对保元汤治疗虚劳病的作用最大。同时,保元汤也可能与视黄醇代谢、药物代谢-细胞色素P450、癌症的途径、5-羟色胺能突触、糖酵解/糖异生和酪氨酸代谢通路有关,调节血管和神经系统、炎症和其他疾病。

保元汤可以调节与泌尿生殖系统和血液系统疾病相关的靶点以及化学致癌作用、类固醇激素生物合成、HIF-1和花生四烯酸代谢等信号通路。值得注意的是,本研究首次发现保元汤作用于虚劳病的若干靶点和信号通路有望成为新的研究目标,由于上述发现主要依赖于理论分析,预计会有更多实验支持这些发现以及潜在的临床应用。



参考文献

[1] 张妍, 董琳, 雍婧姣, et al. 黄芪药材主要成分的含量测定方法及高效液相指纹图谱研究[J]. 时珍国医国药, 2016, 27(11): 2610-2613.

[2] 马鸿雁, 邓雨娇, 马倩, et al. 甘草的研究概况[J]. 中药与临床, 2018, 9(01): 59-62.

[3] 邓淑蓉, 潘宇政. 肉桂主要化学成分及药理作用研究概况[J]. 现代中西医结合杂志, 2018, 27(04): 448-451.

[4] 邱念伟, 刘倩, 刘慧. 生物学实验数据统计分析中的多重比较法[J]. 生物数学学报, 2015, 30(03): 535-541.

[5] Devi K P, Malar D S, Nabavi S F, et al. Kaempferol and inflammation: From chemistry to medicine[J]. Pharmacological Research, 2015, 99: 1-10.

[6] Wang X, Yang Y, An Y, et al. The mechanism of anticancer action and potential clinical use of kaempferol in the treatment of breast cancer[J]. Biomedicine & Pharmacotherapy, 2019, 117.

[7] Thelingwani, Dhansay, Smith, et al. Potent inhibition of CYP1A2 by Frutinone A, an active ingredient of the broad spectrum antimicrobial herbal extract from P. fruticosa[J]. Xenobiotica, 2012, 42(10).

[8] Qiu S, Sun G, Zhang Y, et al. Involvement of the NF-κB signaling pathway in the renoprotective effects of isorhamnetin in a type 2 diabetic rat model[J]. Biomedical reports, 2016, 4(5): 628-634.

[9] Huang D, Wang C, Duan Y, et al. Targeting Oct2 and P53: formononetin prevents cisplatin-induced acute kidney injury[J]. Toxicology and applied pharmacology, 2017, 326: 15-24.

[10] Gao M, Zhang W-C, Liu Q-S, et al. Pinocembrin prevents glutamate-induced apoptosis in SH-SY5Y neuronal cells via decrease of bax/bcl-2 ratio[J]. European journal of pharmacology, 2008, 591(1-3): 73-79.

[11] Abdel-Aziz H A, Mekawey A A, Dawood K M. Convenient synthesis and antimicrobial evaluation of some novel 2-substituted-3-methylbenzofuran derivatives[J]. European journal of medicinal chemistry, 2009, 44(9): 3637-3644.

[12] Akber U, Na B-R, Ko Y-S, et al. Phytocomponent 4-hydroxy-3-methoxycinnamaldehyde ablates T-cell activation by targeting protein kinase C-θ and its downstream pathways[J]. International immunopharmacology, 2015, 25(1): 130-140.

[13] Nurden A T, Pillois X. ITGA2B and ITGB3 gene mutations associated with Glanzmann thrombasthenia[J]. Platelets, 2018, 29(1): 98-101.

[14] Tan M L, Yoshida K, Zhao P, et al. Effect of chronic kidney disease on nonrenal elimination pathways: a systematic assessment of CYP1A2, CYP2C8, CYP2C9, CYP2C19, and OATP[J]. Clinical Pharmacology & Therapeutics, 2018, 103(5): 854-867.

[15] Hansen L B, Lorenzen M, Bentin-Ley U, et al. Presence of the vitamin D inactivating enzyme CYP24A1 in human sperm and prediction of the success of intrauterine insemination: a prospective study[J]. The Journal of steroid biochemistry and molecular biology, 2019, 191: 105353.

[16] Pazik J, Lewandowski Z, Nowacka Cieciura E, et al. SP742 MALNUTRITION RISK IN KIDNEY ALLOGRAFT RECIPIENTS TREATED WITH MYCOPHENOLATE MOFETIL IS ASSOCIATED WITH IMPDH1 rs2278294 POLYMORPHISM[J]. Nephrology Dialysis Transplantation, 2018, 33(suppl_1): i598-i599.

[17] Yucesoy B, Kashon M L, Johnson V J, et al. Genetic variants in TNF α, TGFB1, PTGS1 and PTGS2 genes are associated with diisocyanate-induced asthma[J]. Journal of immunotoxicology, 2016, 13(1): 119-126.

[18] Darbandi N, Ramezani M, Khodagholi F, et al. Kaempferol promotes memory retention and density of hippocampal CA1 neurons in intra-cerebroventricular STZ-induced experimental AD model in Wistar rats[J]. Biologija, 2016, 62(3).

[19] Frasinyuk M S, Mrug G P, Bondarenko S P, et al. Application of Mannich bases to the synthesis of hydroxymethylated isoflavonoids as potential antineoplastic agents[J]. Organic & biomolecular chemistry, 2015, 13(46): 11292-11301.

[20] Tseng H H L, Vong C T, Leung G P-H, et al. Calycosin and Formononetin Induce Endothelium-Dependent Vasodilation by the Activation of Large-Conductance Ca2[J]. Evidence-Based Complementary and Alternative Medicine, 2016, 2016.

[21] Mehta P A, Fukuda T, Zhao J, et al. Quercetin: A Novel Targeted Chemoprevention for Patients with Fanconi Anemia (FA): Am Soc Hematology, 2017.

[22] Xie F, Chai J-K, Hu Q, et al. Transdermal permeation of drugs with differing lipophilicity: Effect of penetration enhancer camphor[J]. International journal of pharmaceutics, 2016, 507(1-2): 90-101.

[23] Moayedi Y, Greenberg S A, Jenkins B A, et al. Camphor white oil induces tumor regression through cytotoxic T cell‐dependent mechanisms[J]. Molecular carcinogenesis, 2019, 58(5): 722-734.

[24] Sarkadi B, ?Zvegy-Laczka C, Német K, et al. ABCG2 – a transporter for all seasons[J]. Febs Letters, 2004, 567(1): 116-120.

[25] Yarla N, Ganapaty S. Bioactive flavonoids as ABC transporters inhibitors for reversion of multidrug resistance in cancer[J]. J. Mar. Sci. Res. Dev, 2013, 4: 1-2.

[26] Hellmann J, Tang Y, Zhang M J, et al. Atf3 negatively regulates Ptgs2/Cox2 expression during acute inflammation[J]. Prostaglandins & other lipid mediators, 2015, 116: 49-56.

[27] Chen Y, Du Y, Li Y, et al. Panaxadiol saponin and dexamethasone improve renal function in lipopolysaccharide-induced mouse model of acute kidney injury[J]. PloS one, 2015, 10(7): e0134653.

[28] Zhang Q-Y, Wang F-X, Jia K-K, et al. Natural product interventions for chemotherapy and radiotherapy-induced side effects[J]. Frontiers in pharmacology, 2018, 9.

[29] Jansen J. Innovative strategies to improve or replace renal proximal convoluted tubule function[M]. [Sl: sn], 2016.

[30] Meng L, Van Putten V, Qu L, et al. Altered expression of genes profiles modulated by a combination of Astragali Radix and Angelicae Sinensis Radix in obstructed rat kidney[J]. Planta medica, 2010, 76(13): 1431-1438.

[31] Aggarwal B B, Ichikawa H, Garodia P, et al. From traditional Ayurvedic medicine to modern medicine: identification of therapeutic targets for suppression of inflammation and cancer[J]. Expert opinion on therapeutic targets, 2006, 10(1): 87-118.

[32] Poulos T L, Johnson E F: Structures of cytochrome P450 enzymes, Cytochrome P450: Springer, 2015: 3-32.

[33] Iyengar R, Zhao S, Chung S-W, et al. Merging systems biology with pharmacodynamics[J]. Science translational medicine, 2012, 4(126): 126ps7-126ps7.

[34] Sukkummee W, Jittisak P, Wonganan P, et al. The prominent impairment of liver/intestinal cytochrome P450 and intestinal drug transporters in sepsis-induced acute kidney injury over acute and chronic renal ischemia, a mouse model comparison[J]. Renal failure, 2019, 41(1): 314-325.

[35] Fujita K-I. Food-drug interactions via human cytochrome P450 3A (CYP3A)[J]. Drug metabolism and drug interactions, 2004, 20(4): 195-218.

[36] Zhao Y-Y, Lin R-C: Metabolomics in nephrotoxicity, Advances in clinical chemistry: Elsevier, 2014: 69-89.

[37] Wei H, Zhou T, Tan B, et al. Impact of chronic unpredicted mild stress-induced depression on repaglinide fate via glucocorticoid signaling pathway[J]. Oncotarget, 2017, 8(27): 44351.

[38] Gao J-R, Qin X-J, Jiang H, et al. The effects of Qi Teng Xiao Zhuo granules, traditional Chinese medicine, on the expression of genes in chronic glomerulonephritis rats[J]. Journal of ethnopharmacology, 2016, 193: 140-149.

[39] Luan J, Jiao C, Kong W, et al. circHLA-C plays an important role in lupus nephritis by sponging miR-150[J]. Molecular Therapy-Nucleic Acids, 2018, 10: 245-253.

[40] Mohamed R, Jayakumar C, Ramesh G. Chronic administration of EP4-selective agonist exacerbates albuminuria and fibrosis of the kidney in streptozotocin-induced diabetic mice through IL-6[J]. Laboratory Investigation, 2013, 93(8): 933.

[41] Harris R C, Breyer M. Arachidonic acid metabolites and the kidney[J]. Brenner & Rector’s the kidney. 7th ed. St. Louis, MO: WB Saunders, 2004: 727-61.

[42] Liu H, Wang J, Zhou W, et al. Systems approaches and polypharmacology for drug discovery from herbal medicines: an example using licorice[J]. Journal of ethnopharmacology, 2013, 146(3): 773-793.