电网工程线路施工技术探讨

(整期优先)网络出版时间:2015-06-16
/ 2

电网工程线路施工技术探讨

韩伟

(江苏省送变电公司210028)

摘要:随着我国经济的迅速发展,我国的电网工程也在逐渐壮大,输电线路施工技术也随之提高,它直接影响着电网工程的质量,所以电网企业应当对输电线路施工技术加以重视。本文针对电网工程输电线路施工技术进行分析,探讨输电线路施工的管理措施和施工技术要点。

关键词:电力工程;线路施工;基础工程;施工技术

1、关于基础工程

高压输电线路的基础即杆塔埋入地下的部分,基础的作用是保证杆塔在运行中不发生下沉或受到外力的作用时,不发生倾倒或变形。基础施工质量的好坏,对高压输电线路的安全运行关系极大。因此,保证基础施工质量非常重要,在现场施工的工作中,以必要的技术手段加以控制,用保证施工图设计所要求达到的质量来要求。

1.1岩石嵌固基础

该基础型式适用于覆盖层较浅或无覆盖层的强风化岩石地基,其特点是底板不配筋,基坑全部掏挖。上拔稳定,具有较强的抗拔承载能力。需要时,可将主相的坡度设置与塔腿主材坡度相同,以减小偏心弯矩,还可省去地脚螺栓。由于该基型充分利用了岩石本身的抗剪强度,混凝土和钢筋的用量都较小,同时减少了基坑土石方量,浇制混凝土不需要模板,施工费用较低。

1.2岩石锚杆基础

该基型适用于中等风化以上的整体性好的硬质岩。该基础型式是在岩石中直接钻孔、插入锚杆,然后灌浆,使锚杆与岩石紧密粘结,充分利用了岩石的强度,从而大大降低了基础混凝土和钢材量。但岩石锚杆基础需逐基鉴定岩石的完整性。

1.3掏挖基础

该基型分全掏挖和半掏挖两种,适用无地下水的硬塑粘性土地基。在基坑施工可成型的情况下,开挖基坑时不扰动原状土,避免大开挖后再填土。基础承受上拔荷载时,原状土的内摩擦角和凝聚力得以充分发挥作用。这种基础型式也显不了较高的经济效益和环境效益,根据以往工程的统计,由于各线路地质条件的不同等原因,采用全掏挖基础比用阶梯型基础节约钢材和混凝土分别为3%-7%和8%-20%。掏挖基础有直相式和斜插式两种型式。斜插式掏挖基础将主相的坡度设置与塔腿主材坡度相同,减小了基础水平力产生的偏心弯矩,还可省去地脚螺栓。

1.4阶梯型基础

该基础是传统的基础型式,适用各类地质、各种塔型,其特点是大开挖,采用模板浇制,成型后再回填土,利用土体与混凝土重量抗拔,基础底板刚性抗压,不配钢筋。由于阶梯型基础混凝土量较大,埋置较深,易塌方及有流砂地区难以达到设计深度,因此在此类地区应尽量少用。

1.5大板基础

大板基础的主要设计特点是:底板大、埋深浅、底板较薄,底板双向配筋承担由铁塔上拔、下压和水平力引起的弯矩和剪力,主相计算与阶梯基础相同。与阶梯基础相比,埋深浅,易开挖成形,混凝土量能适当降低,但钢筋量增加较多。与灌注桩相比,在软弱地基中应用较为广泛。它施工方便,特别是对于软、流塑粘性土、粉土及粉细砂等基坑不易成型的塔位。设计时,对底板的高厚比应进行一定的控制(悬臂长度:底板厚<3:1)不足时可在主柱下增加台阶,以减少板的悬臂长度和底板厚度,为了减小混凝土量,主柱中心与底板‘1,心设置偏心,抵消水平弯矩,达到减小底板及配筋的效果。大板基础设计时应控制沉降及不均匀沉降,对转角塔及负荷较大的直线塔进行地基沉降变形验算,施工时应尽量少扰动地基土,清除开挖的全部浮土井做好热层,必要时使用块石灌浆。

1.6斜插板式基础

该基础的主要特点是基础主相坡度与塔腿主材坡度一致,塔腿主材角钢直接插入基础混凝土中,使基础水平力对基础底板的影响降至最低。在正常条件下,基础土体上拔稳定、下压稳定和基础强度计算可忽略水平力的影响。与大板基础相比,由于偏心弯矩大大减小,下压稳定控制的基础底板尺寸可相应减小,从而降低了混凝土量和底板配筋量。由于省去了塔座板和地脚螺栓,其钢材的综合指标降低了25%左右。

1.7灌注桩基础

对于地质条件为流塑、地基持力层较深且基础作用力较大的耐张塔或直线塔,使用钻孔灌注桩基础是设计中广泛采用的一种方法。它主要桩周与土的摩擦力和桩端承载力承担基础上拔力和下压力,施工方便,安全可靠。缺点是施工费用较高。

1.8联合基础

联合基础主要适用于基础根开较小且基坑难以开挖、板式基础上拔土体重叠的软弱土塔位,其设计特点是埋深较浅,4个基础整体浇制,基础底板上面的纵、横向加劲混凝土梁承担由基础上拔力、下压力和水平力引起的弯矩,底板与纵、横向加劲肋配筋,整体性好。缺点是基础材料用量较大,施}_较为烦琐,设计不易成系列。

2、关于杆塔工程

高压输电线路杆塔按受力特点可分为直线和耐张型。杆塔选择是否适当,对于送电线路建设速度和经济性,供电可靠性以及维修的方便性等影响都很大,合理选择杆塔型式、结构,是杆塔(设计)工程重要的一环。

平地、丘陵及便于运输和施工的地区,应优先采用钢筋混凝土杆和预应力混凝土杆。应积极推广预应力混凝土杆,逐步代替普通钢筋混凝土杆。考虑运输和施工的实际困难,出线走廊受限制的地区、大跨越或重直档距大时,可采用铁塔。

对于电杆还要加上埋入地下深度。杆塔组立是高压输电线路施工中一个重要的环节,目前我国在110kV输电线路杆塔组立方式,主要有整体组立,分解组立。钢筋混凝土杆的特点是单件重量大,杆身之间多用焊接,且又是平面结构,沿线路方向稳定性差,因此钢筋混凝土杆的组立大部分在地面组装好,然后利用抱杆整体拉起即整体组立在输电线路中广泛采用环形截面的钢筋混凝土构件。这类构件分普通和预应力两种。预应力构件浇注前,将钢筋施行张拉,待混凝土凝固后撒出张力,这时钢筋回缩而混凝土必须阻止其回缩,因而混凝土受一个预应压力。当构件承担而受拉时,这种预压力可部分或全部抵消受拉时应力而不致产生裂缝。裂缝的危害在于使钢筋表面与潮湿空气中的氧接触,发生锈蚀,影响电杆寿命。

3、关于架线工程

高压输电线路工程其架线施工包括架线前的准备工作、放线导地线连接、弛度观测、紧线及附件安装。架线施工,从展放方法来讲,分为拖地展放、张力展放。拖地展放线盘处不需制动,线拖在地面行进的方法,此法不用专用设备,比较简单,但导线的磨损较为严重,劳动效率低,放线需大量的人工,在放线质量难保证。张力放线,即使用牵张机械使导地线始终保持一定的张力,保持对交叉物始终有一定安全距离的展放方法。它能保证导地线展放质量,效率较高,但机械笨重和费用昂贵。张力放线导线等均不落地,因而有效地防庄了线材磨损,提高了施工质量。

放线过程中,要仔细检查导线,不得有金钩、磨损、断股情况。如单股损伤不超过直径的一半,钢心铝线和其它导线不超过导电部分的5%,可将棱角、毛刺修光处理。在一个补修金具的有效长度内,当钢心铝线出现钢心断股或铝部分损伤面积超过25%,单金属绞线损伤面积超过25%,连续损伤虽在允许修补范围之内,而损伤长度已超过一个补金具所能补修的长度,或金钩、破股已使钢心或内层线股形成无法修复的永久变形者,都须切断重接导线在连接前应检查两端线失的扭绞方向、规格是否相同,不同方向扭绞、不同规格的线,禁止在档中连接,连接按照操作工艺进行。

输电线路紧线工作需在基础混凝土强度达到设计值的100%,杆塔结构组装完整,螺栓已紧固的情况下进行,在耐张塔受张力方向的反侧,必须打好临时拉线,以防庄杆塔受力过大或塔身变形、横担产生位移,影响弛度观测。临时拉线与地面夹角一般不宜大于45°,其所能平的张力值,应符合设计规定。

结语

随着我国经济的迅速发展,我国的电网工程也在逐渐壮大,输电线路施工技术也随之提高,它直接影响着电网工程的质量,所以电网企业应当对输电线路施工技术加以重视。本文针对电网工程输电线路施工技术进行分析,探讨输电线路施工的管理措施和施工技术要点。

参考文献:

[1]吴钢.电网工程输电线路施工技术分析[J].电子制作,2014,15(19):215.

[2]苏功建.浅谈电网工程输电线路施工技术关键点[J].低碳世界,2014,16(5):78-79.

[3]高玉恒.浅谈电网工程输电线路施工技术要点[J].中小企业管理与科技,2014,25(23):134,135.

[4]张才明,宋登科,翟慧娟,等.浅谈电网工程输电线路施工技术关键点[J]工城市建设理论研究(电子版),2014,30(31):2478.

[5]张斌.电网工程输电线路施工技术分析[J].城市建设理论研究(电子版),2014,42(22):4239-4240.

[6]孙梦凯.试论电网工程输电线路施工技术要点[J].科技致富向导,2014,36(22):294.